Antibacterial Synergic Effect and Cellular Responses of Nalidixic Acid-Resistant Salmonella typhimurium Exposed to Tea Polyphenols and Nalidixic Acid

Nalidixic Acid 내성인 Salmonella typhimurium의 녹차 폴리페놀과 Nalidixic Acid에 의한 살균상승 효과 및 세포반응

  • Lim, Ye-Ji (Department of Biotechnology, Soonchunhyang University) ;
  • Cho, Yun-Seok (Department of Biotechnology, Soonchunhyang University) ;
  • Oh, Kye-Heon (Department of Biotechnology, Soonchunhyang University)
  • 임예지 (순천향대학교 생명공학과) ;
  • 조윤석 (순천향대학교 생명공학과) ;
  • 오계헌 (순천향대학교 생명공학과)
  • Published : 2008.06.30

Abstract

The purpose of this work was to investigate the synergically bactericidal effects and cellular responses of green tea polyphenols (TPPs) and nalidixic acid (NA) on nalidixic acid-resistant (NAR) Salmonella typhimurium. The bactericidal activities of $>3,500{\mu}g/ml$ TPPs and $<256{\mu}g/ml$ NA were investigated for S. typhimurium of which initial cell number was approximately adjusted to 107 cell/ml. Complete elimination of NAS-S. typhimurium was achieved within 6 hr of incubation at the concentrations of $3,500{\mu}g/ml$ TPP or $256{\mu}g/ml$ NA, whereas only partial bactericidal effect was achieved under the same conditions. However, the combinations of $3,000{\mu}g/ml$ TPPs and $32{\mu}g/ml$ NA against NAS-S. typhimurium and $3,500{\mu}g/ml$ TPPs and $64{\mu}g/ml$ nalidixic acid against NAR-S. typhimurium showed complete removal within 5 hr of incubation. The stress shock proteins (SSPs) were induced at different concentrations of TPP o rNA used as stressors against cell culture of S. typhimurium. The proteins were identified as 70-kDa DnaK and 60-kDa GroEL by SDS-PAGE and Western blot. SSPs induced by the stressors were found to increase in proportion to the TPPs or NA. Scanning electron microscopy analyses revealed the presence of perforations and irregular rod shape with wrinkled surfaces for cells treated with TPPs or NA.

본 연구는 항생제인 naliidixic acid (NA)에 내성이 있는 Salmonella tyhimurium에 대한 녹차폴리페놀(TPP)와 NA의 시너지적 살균효과와 세포반응을 조사하기 위하여 수행되었다. 초기세포밀도$10^7$ cell/ml의 S. typhimurium에 대한 살균효과는 $>3,500{\mu}g/ml$ TPP와 $<256{\mu}g/ml$ NA에서 조사하였다. NA 감수성인 S. tyhimurium은 $3,500{\mu}g/ml$ TPP 또는 $256{\mu}g/ml$ NA의 농도에서 6시간 이내에 완전히 제거되었으나, 동일한 조건하에서 NA 내성 S. typhimurium은 일부만이 살균되었다. 그러나 NA 감수성 인 S. typhimurium에 대한 $3,000{\mu}g/ml$ TPP과 $32{\mu}g/ml$ NA의 병용, 그리고 NA 내성인 S. typhimurium에 대한 $3,500{\mu}g/ml$ TPP과 $64{\mu}g/ml$ NA의 병용으로 5시간 이내에 완전한 살균효과를 나타내었다. 스트레스 단백질이 이들 S. typhimurium에 대한 스트레스 원으로서 TPP와 NA에 대한 반응으로 유도되었다. SDS-PAGE와 Western blot에 의하여 그 단백질들은 70-kDa의 DnaK와 60-kDa의 GroEL로 동정되었다. 스트레스에 의해 유도된 단백질은 TPP나 NA의 노출량에 비례하여 증가하였다. 주사전자 현미경 분석에 의하여 TPP나 NA에 의해 처리된 세포는 세포표면에 구멍 이 나고 불규칙적인 막대모양으로 관찰되었다.

Keywords

References

  1. 국립 보건원. 2003. 2차 의료기관 혈액 배양분리균의 항생제 내성 양상 감염병발생정보. 14, 413-419
  2. Bean, N. and P.M. Griffin. 1990. Foodborne disease outbreaks in the United States, 1973-1987;Pathogens, Vehicles, and Trends. J. Food Prot. 53, 804 https://doi.org/10.4315/0362-028X-53.9.804
  3. Bollag. D.M., M.D. Rozycki, and S.J. Edelstein. 1996. Protein methods. 2nd ed. New York, Wiley-Liss, USA
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Choi, S.H., J.H. Woo, J.E. Lee, S.J. park, E.J. Choo, Y.G. Kwak, M.Y. Kim, M.S. Choi, N.Y. Lee, B.K. Lee, N.J. Kim, J.Y. Jeong, J.S.Ryu, and Y.S. Kim. 2005. Increasing incidence of quinolone resistance in human non-typhoid Salmonella enterica isolates in Korea and mechanism involved in quinolone resistance. J. Antimicrob. Chemother. 56, 1111-1114 https://doi.org/10.1093/jac/dki369
  6. Cho, Y.S., H.Y. Kahng, C.K. Kim, J.J. Kukor, and K.H. Oh. 2000. Physiological and cellular responses of the 2,4-D degrading bacterium, Burkholderia cepacia YK-2, to the phenoxyherbicides 2,4-D and 2,4,5-T. Curr. Microbiol. 41, 33-38 https://doi.org/10.1007/s002840010087
  7. Cho, Y.S., N.S. Schiller, and K.H. Oh. 2007. Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols. Curr. Microbiol. 53, 501-506
  8. Chun, C.H. 1978. Tropical diseases in Korea. past and present. Kor. J. Infect. Dis. 10, 29-35
  9. Flattery-O'Brien, J., L.P. Collinson, and I.W. Daews. 1993. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. J. Gen. Microbiol. 139, 501-507 https://doi.org/10.1099/00221287-139-3-501
  10. Graham, H.N. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21, 334-350 https://doi.org/10.1016/0091-7435(92)90041-F
  11. Hii, C.S. and S.L. Howell. 1984. Effects of epicatechin on rat islets of Langerhasns. Diabetes 33, 291-296 https://doi.org/10.2337/diabetes.33.3.291
  12. Huang, Y., A. Zhang, C.W. Lau, and Z.Y. Chen. 1998. Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci. 63, 275-283 https://doi.org/10.1016/S0024-3205(98)00273-2
  13. Ikigai, H., T. Nakae, Y. Hara, and T. Shimamura. 1993. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta 1147, 132-136 https://doi.org/10.1016/0005-2736(93)90323-R
  14. Kim, H.S., S.S. Han, K.W. Oh, T.S. Jeong, and K.Y. Nam. 1987. Effects of ginseng saponin on the antimicrobial activities of some antibiotics. Kor. J. Micol. 15, 87-91
  15. Mendonca, A.F., T.L. Amoroso, and S.J. Knabel. 1994. Destruction of Gram-negative food-born pathogens by high pH involves disruption of the cytoplasmic membrane. Appl. Environ. Microbiol. 60, 4009-4014
  16. Committee for Clinical Laboratory Standards. 2007. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 7th ed. Approved standard M7-A5. CLSI, Wayne, PA, USA
  17. Park, S.H., K.H. Oh, and C.K. Kim. 2001. Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shock. Curr. Microbiol. 43, 176-181 https://doi.org/10.1007/s002840010283
  18. Parry, M.F., K.B. Panzer, and M.E. Yukna. 1989. Quinolone resistance. Am. J. Med. 87, 12-16
  19. Periago, P.M., W. Shaik, T. Abee, and J.A. Wouters. 2002. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 68, 3486-3495 https://doi.org/10.1128/AEM.68.7.3486-3495.2002
  20. Roberts, D. 1982. Factors contributing to outbreaks of food poisoning in England and Wales 1972-1979. J. Hyg. 89, 491 https://doi.org/10.1017/S0022172400071059
  21. Rockabrand, D., T. Arthur, G. Korinek, K. Livers, and P. Blum. 1995. An essential role for the Escherichia coli DnaK protein in starvation-induced thermotolerance, $H_2O_2$ resistance, and reductive division. J. Bacteriol. 177, 3695-3703 https://doi.org/10.1128/jb.177.13.3695-3703.1995
  22. Sambrook, J.K., E.F. Fritsch, and T. Maniatis. 2001. Molecular cloning, 3rd ed., Cold Spring Harbor, New York, NY, USA
  23. Stamm, J.M., C.W. Hanson, D.T. Chu, R. Bailer, C. Vojtko, and P.B. Gernandes. 1986. In vitro evaluation of A-56619 (difloxacin) and A-56620: new ary1-fluoroquinolones. Antimicrob. Agents Chemother. 29, 193-200 https://doi.org/10.1128/AAC.29.2.193
  24. Suzuki, H., A. Ishigaki, and Y. Hara. 1998. Long term effect of a trace amount of tea catechins with perilla oil on the plasma lipids in mice. Int. J. Vitam. Nutr. Res. 68, 272-274
  25. Todd, E.C.D. 1983. Factors that contributed to foodborne disease in Canada, 1973-1977. J. Food Prot. 46, 737 https://doi.org/10.4315/0362-028X-46.8.737
  26. Todd, E.C.D. 1992. Foodborne disease in Canada a 10-year summary from 1975 to 1984. J. Food Prot. 55, 123 https://doi.org/10.4315/0362-028X-55.2.123
  27. Tsai, T.H., T.H. Tsai, Y.C. Chien, C.W. Lee, and P.J. Tsai. 2008. In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities. Food Chem. 110, 859-864 https://doi.org/10.1016/j.foodchem.2008.02.085
  28. Wiedemann, B. and M.T. Zuhlsdorf. 1989. Brief report: resistance development to fluoroquinolones in Europe. Am. J. Med. 87, 9-11 https://doi.org/10.1016/0002-9343(89)90011-9
  29. Wilks, D., M. Farrubgtib, and D. Rubenstein. 1995. The infectious disease manual, 1st ed., p 190-192, Blackwell Science
  30. Wolfson, J.S. and D.C. hooper. 1985. The Fluoroquinolones: structures, mechanisms of action and resistance, and spetra of activity in vitro. Antimicrob. Agents Chemother. 28, 581-589 https://doi.org/10.1128/AAC.28.4.581
  31. Yang, C.S. and Z.Y. Wang. 1993. Tea and cancer. J. Natl. Cancer Inst. 85, 1038-1049 https://doi.org/10.1093/jnci/85.13.1038
  32. Yee, Y.K. and W.K. Marcel. 2000. Anti-Helicobacter pylori activity of chinese tea: in vitro study. Aliment. Pharmacol. Ther. 14, 635-638 https://doi.org/10.1046/j.1365-2036.2000.00747.x
  33. Zhao, W.H., Z.Q. Hu, S. Okubo, Y. Hara, and T. Shimamura. 2001. Mechanism of synergy between epigallocatechin gallate and ${\beta}$-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1737-1742 https://doi.org/10.1128/AAC.45.6.1737-1742.2001