The Experimental Study on Anti-oxidant and Anti-inflammatory Effect of Sungyounggagambang (SYTG)

Eui-II Kim, Dong-Youl Yoo
Dept. of Oriental Medicine Graduate School, Daejeon University

Purpose: This study was performed to evaluate anti-oxidant activities and anti-inflammatory effects of Sungyounggagambang (SYTG).

Methods: In the study of anti-oxidant activities, SYTG was investigated by DPPH radical scavenger activity, superoxide dismutase activity and superoxide anion radical scavenger activity. In the study of anti-inflammatory effects, SYTG was investigated using cultured cells and murine models. As for the parameters of inflammation, levels of several inflammatory cytokines and chemical mediators which are known to be related to inflammation were measured in mouse lung fibroblast cells (mLFCs) and RAW264.7 cells.

Results: Prior to the experiment, we investigated the security of SYTG by measuring GGT and GPT in serum.
1. SYTG showed high antioxidant activity in a concentration-dependent degree by measured scavenging activity of DPPH free radical, superoxide dismutase and superoxide anion radical.
2. SYTG inhibited IL-1β, IL-6, TNF-α, COX-2 and NOS-II mRNA expression as compared with the control group in a concentration-dependent degree in RAW264.7 cell line.
3. SYTG inhibited IL-1β, IL-6 production significantly at 100 μg/ml and TNF-α production significantly at 50, 100 μg/ml as compared with the control group in RAW264.7 cell line.
4. SYTG inhibited IL-1β and IL-6 production significantly as compared with the control group in serum of acute inflammation-induced mice, and decreased IL-1β, IL-6 production in spleen tissue, and also decreased IL-1β, IL-6 production in liver tissue.

Conclusion: These results suggest that SYTG can be useful in treating diverse female diseases caused by inflammation such as endometrosis, myoma, pelvic congestion, chronic cervicitis, chronic pelvic inflammatory disease and so on.

Key Words: Sungyounggagambang, anti-oxidant activity, anti-inflammatory effect.
Ⅰ. 서 론

한국의 한의학에 따르면, 병리학적 이상을 일으키는 원인을 치료하는 것이 중요하다고 전한다. 따라서, 흔히 병리학적 이상을 일으키는 원인에 대한 치료법이 중요하다.

또한, 한의학의 원칙에 따르면, 병리학적 이상을 일으키는 원인을 치료하는 것이 중요하다고 전한다. 따라서, 흔히 병리학적 이상을 일으키는 원인에 대한 치료법이 중요하다.

이러한 추론에 근거하여, 본 연구에서는 병리학적 이상을 일으키는 원인에 대한 치료법을 제시하고자 한다.

Ⅱ. 실험

1. 제 료

1) 동 물

이 실험동물은 대한실험동물연구원에서 구입한 SD(Sprague-Dawley)원반구와 Balb/c 원반구를 사용하였다. 동물 사육실의 조건은 conventional system으로, 22±2℃의 온도, 12시간의 일정하게 교량하는 환경을 조성하였다. 사료는 고양이 사료 (조단백질 22.1% 이상, 조직량 8.0% 이상, 칼슘 0.6% 이상) 및 대사반응 중의 흡착에 대한 항생제의 효과를 입증하고 있는 것으로도 알 수 있었다.

본 연구에 사용된 發病湯加減方은 염 2)의 《醫宗金鑑·刪補名醫方論》에서 "四物湯加人蔘黃芪 一方去芐藥"이므로 한 바탕 달리, 기존의 發病湯1)에서, 生地 黃芩 泽瀉 乃去하며, 觀正의 약의를 강화하고 20-22), 각각 항암효과 및 항산화에 대한 항성효과가 입증된 芥末薑 23), 香附子 24), 玄 胡索 25), 麥黴 26)의 日本薑의 뼈로 가며, 항암효과와 유제산된 치료방법으로, 저자는 본 치방이 실험적으로도 항암증에 유의한 효과가 있을 것으로 사료되었다.

이에 發病湯加減方의 항암효과와 항산화 효과를 알아보기 위해서 항암효과 및 항산화 성능에 미치는 영향, R.A.W264.7 세포주에서 염증 관련 cytokine의 유전자 발현 및 생 성에 미치는 영향, 계층 염증성 질환 생 성 모델의 험명내, 비장 및 간 조직내 cytokine 변화에 미치는 영향 등에 대해 실험하였으며 그 결과 유의한 성격을 얻기에 보고하는 바이다.
표 1. Suyoutanggagambang(SYTG)의 처방

<table>
<thead>
<tr>
<th>약명</th>
<th>생약명</th>
<th>용량 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>인삼</td>
<td>Ginseng Radix</td>
<td>6</td>
</tr>
<tr>
<td>황芪</td>
<td>Astragali Radix</td>
<td>15</td>
</tr>
<tr>
<td>스도권</td>
<td>Rehmanniae Radix Preparat</td>
<td>20</td>
</tr>
<tr>
<td>중귀</td>
<td>Angelicae Gigantis Radix</td>
<td>10</td>
</tr>
<tr>
<td>천초</td>
<td>Cnidii Rhizoma</td>
<td>6</td>
</tr>
<tr>
<td>칠부현</td>
<td>Paeoniae Radix Rubra</td>
<td>10</td>
</tr>
<tr>
<td>벼온자</td>
<td>Cyperei Rhizoma</td>
<td>10</td>
</tr>
<tr>
<td>산호소</td>
<td>Curcumae Radix</td>
<td>10</td>
</tr>
<tr>
<td>비등석</td>
<td>Spatholobi Caulis</td>
<td>12</td>
</tr>
<tr>
<td>Total amount</td>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>

3) 시약 및 기기

(1) 시약
본 실험에 사용된 시약은 Dulbecco’s phosphate buffered saline, Hank’s balanced salt solution, Hank’s balanced salt solution, 3.8% sodium citrate, lipopolysaccharide (LPS), chlorosulforrodamin-B (SRB), diethyl pyrocarbonate (DEPC), NH4Cl, KHCO3, tris-based, tris-HCL, ethanol, EDTA, trichloroacetic acid (TCA), acetic acid, carrageenan, arachidonic acid, 3-4-dimethyl-thiazol-2-dulbecco’s minimum essential medium (DMEM), collagenase A, DNase type I, penicillin, streptomycin, amphotericin, 2,7-dichlorodihydro fluorescin diacetate (DCFH-DA), anti-body avidin -HRP, complete adjuvant, chloroform, RPMI-1640, isopropanol, Dulbecco’s phosphate buffered saline(D-PBS), RNAzol acid, magnesium chloride (MgCl2)은 Sigma (Sigma Co., USA) 제품을, normal saline은 증류제약 제품을, fetal bovine serum (FBS)은 Hyclone (Hyclone Logan, USA) 제품을, RNase는 Pharmingen (Torreyana, USA) 제품을, IL-1β, IL-6, TNF-α, COX-2, NOS-II ELISA kit는 R&D system (Minneapolis, USA) 제품을 사용하였으며, 기타 시약은 복급 시약을 사용하였다.

(2) 기기
본 실험에 사용된 기기는 centrifuge (Beckman Co., USA.), rotary vacuum evaporator (Buchi 461, Swiss), deep freezer (Sanyo Co., Japan), freeze dryer (Eyela Co., Japan), roller Mixer (Gowon scientific technology Co., Korea), 열탕수지기 (대웅, Co., Korea), CO2 incubator (Forma scientific Co., USA), clean bench (Vision scientific Co., Korea), autoclave (Sanyo, Co., Japan), micro pipet (Gilson, Co., France), water bath (Vision scientific Co., Korea), vortex mixer (Vision scientific Co., Korea), spectrophotometer (Shimazue, Co., Japan), thermocycler system (MWG Biotech, Co., Germany), ice-maker (Vision scientific Co., Korea), homogenizer (OMNI, Co., USA), plate shaker (Lab-Line, Co., USA), ELISA reader (Molecular Devices, Co., USA). Quantitative real-time-PCR (ABI, Co., USA) 등을 사용하였다.

2. 방법

1) 검액의 조제
SYTG 2㎖를 3,000 ㎖ round flask에 담고 증류수 2,000 ㎖를 가한 후, 3시간 가열 추출하여, 침전물을 3회 여과 (3M filter paper)하고, 이 여과액을 rotary vacuum evaporator에서 감압 농축하였 다. Round flask에 농축된 용액을 -70℃ deep freezer에서 4시간 동안 방치하고,
24시간 동안 freeze dryer로 동결 건조하여 25.5g의 분말을 얻어서 실험에 필요한 농도로 생리시험수에 희석하여 사용하였다.

2) 세포독성 측정

mLFCs에 SYTG (200 μg/ml, 100 μg/ml, 50 μg/ml, 10 μg/ml, 1 μg/ml)을 처리하고, 배양 종료 후에 배양액을 버리고 PBS로 2회 세척하였다. 세척한 각 well에 50% TCA (trichloroacetic acid)를 50
ml를 가하고, 1시간 동안 4℃에 방치하였다. 이를 다시 증류수로 5회 세척한 다음 well plate를 공기 중에서 건조하였다. 여기에 SRB (0.4%/1% acetic acid) 용액을 100 μl/well로 가하고 식온에서 30
분간 염색하였다. 그리고 0.1% acetic acid 용액으로 약 4-5회 세척한 다음 공기 중에서 건조하고 10mM Tris Base로 100 μl/well로 용해시켰다. 이 plate를
plate shaker에서 3.5 speed로 5분간 shaking하고 ELISA reader로 540 nm에서 흡광도를 측정하였다.

3) 간독성 검사

SD 청자에 14일간 구강으로 SYTG을 98.3 mg/200 g으로 투여하고, 생쥐에게서 심장 천자를 통하여 체취한 후 혈청을 분리하여 GGT, GPT를 측정하였다.

4) 항산화 활성 측정

(1) 2,2-diphenyl-1-picrylhydrazyl (DPPH) 소거능

150mM DPPH/ETOH 450 ml에 SYTG를 1000, 500, 250, 125, 62.5 μg/ml 농도로 희석하여 50 ml씩 첨가한 후 37℃에서 30분간 반응시켰다. 이를 흡광도 517
nm에서 측정하여 다방향 방법으로 계산하였다.

DPPH 소거능 (%) =

\[
\left(\frac{\text{대조군의 흡광도} - \text{대조군의 흡광도}}{\text{대조군의 흡광도}} \right) \times 100
\]

(2) Superoxide dismutase (SOD) 유사활성

SYTG 0.2 ml에 tris-HCl buffer (pH 8.5), 2.6 ml과 7.2 mM pyrogallol 0.2 ml을 가하여 25℃에서 10 분 반응 후 1 N HCl 0.1 ml로 반응 정지시켰다. 반응액을 420 nm에서 흡광도를 측정하고 buffer
을 첨가한 것을 대조군으로 하여 아래와 같이 저해율을 측정하였다.

SOD 유사활성 (%) = 100 - \[
\left(\frac{\text{SYTG 투여군의 흡광도}}{\text{대조군의 흡광도}} \right) \times 100
\]

(3) Superoxide anion radical (SAR) 소거능

Superoxide anion radical 소거능 측정은 xanthine, xanthine oxidase를 이용하여 NBT으로 측정하였다. 0.1 mM EDTA가 함유된 50mM phosphate buffer (pH 7.8) 2.5 ml에 2mM xanthine 0.2 ml과
1mM NBT (nitro blue tetrazolium) 0.1 ml이 혼합된 반응액에 SYTG를 100, 500, 250, 125, 62.5 μg/ml의 농도로 식온 후 xanthine oxidase 0.2 unit/ml을 가하여 15분 동안 반응시켰다. 반응 후 550
nm에서 측정하였다. 대조군은 DW를 첨가하여 사용하였다.

Superoxide anion radical 소거능 (%) =

\[
\left(\frac{\text{대조군의 흡광도} - \text{대조군의 흡광도}}{\text{대조군의 흡광도}} \right) \times 100
\]

5) Mouse lung fibroblast cells (mLFCs) 배양

정상 Balb/c 청자의 폐조직 1 g을 잘게 분쇄하여 ACK 용액으로 적혈구를
제거한 후 cool D-PBS로 3회 세척하여 conical tube (15 ml)에 넣고 1,400 rpm에서 5분간 원심분리하였다. 원심분리 후 tube에 DMEM (containing collagenase A (5 mg/ml, B.M. Indianapolis, USA)와 DNase type I (0.15 mg/ml, Sigma), antibiotics (penicillin 10,000 U/ml, streptomycin 10 mg/ml, amphotericin B 25 μg/ml)을 넣고 37° C CO₂ 배양기에서 2시간 동안 배양하였다. 여기에 0.5% trypsin-0.2% EDTA를 첨가한 후 30분간 배양 후 인산단층광역영상수 (PBS)로 약 2회 1,500 rpm에서 원심분리하였다. 이들 DMEM-10% FBS로 1주일 동안 배양한 후 0.5% trypsin-0.2% EDTA로 세포를 분리하여 연속으로 3주일씩 3회 반복하여 살아있는 부착세포를 DMEM-5% FBS 배양액에서 배양하였다.

6) Quantitative real-time-PCR

(1) RAW 264.7 세포배양

Murine macrophage cell line RAW264.7 세포주는 10% FBS를 첨가한 DMEM에 넣고 37°C CO₂ 배양기에서 2시간 동안 배양하였다. 여기에 0.5% trypsin-0.2% EDTA를 첨가한 후 30분간 배양 후 인산단층광역영상수 (PBS)로 약 2회 1,500 rpm에서 원심분리하였다. 이들 DMEM-10% FBS로 1주일 동안 배양한 후 0.5% trypsin-0.2% EDTA로 세포를 분리하는 작업을 3회 반복하여 살아있는 부착 세포를 DMEM-5% FBS 배양액에서 배양하였다.

(2) RAW 264.7 세포에서 RNA 분리

먼저 RAW264.7 세포주는 24 well plate에 1×10⁶ 세포로 본주하였다. 여기 에 SYTG (100 μg/ml, 50 μg/ml, 10 μg/ml)을 처리하고 1시간 후 LPS 2 μg/ml 등을 각각의 well에 첨가한 후 6시간 배양하고 2,000 rpm에서 5분간 원심분리하였다. 원심분리 후 상층액을 제거하고, 여기에 RNAzol 500 μl을 넣고 용해될 때까지 혼합하였다. 이 혼합 부유액에 chloroform (CHCl₃) 50 μl를 첨가한 후 15초간 다시 혼합하였다. 이를 얼음으로 15분간 방치한 후 13,000 rpm에서 원심 분리한 후 약 200 μl의 상층액을 회수하여 2-propanol 200 μl와 동량 혼합 후 천천히 혼돌고 얼음에서 15분간 방치하였다. 이를 다시 13,000 rpm에서 원심 분리한 후 80% EtOH로 수 세하고 3분간 vaccum pump에서 건조하여 RNA를 추출하였다. 추출한 RNA는 diethyl pyrocarbonate (DEPC)를 처리한 20 μl의 중류수에 녹여 heating block 75°C에서 분리한 후 first strand cDNA합성을 사용하였다.

(3) 역전사-중합효소 연쇄반응

역전사 (reverse transcription) 반응은 준비된 total RNA 3 μg를 DNase I (10 U/μl) 2 U/tube를 37°C heating block에서 30분간 반응한 후 75°C에서 10분 동안 변성시키고, 이에 2.5 μl 10 mM dNTPs mix, 1 μl random sequence hexanucleotides (25 pmole/ 25 μl). RNA inhibitor로서 1 μl RNase inhibitor (20 U/μl), 1 μl 100 mM DTT, 4.5 μl 5xRT buffer (250 mM, Tris-HCl, pH 8.3, 375 mM KCl, 15 mM MgCl₂)를 가한 후, 1 μl의 M-MLV RT (200 U/μl)를 다시 가하고 DEPC 처리된 중류수로서 최종 부피가 20 μl가 되도록 하였다. 이 20 μl의 반응 혼합액을 꺼서 뒤 2,000 rpm에서 5초간 원심 분리하여 37°C heating block에 서 60분 동안 반응시키며 first-strand cDNA
Real time quantitative PCR은 Applied Biosystems 7500 Fast Real-Time PCR system(Applied Biosystems, USA)를 이용하여 수행하였으며, 사용된 primers는 아래와 같다.

<table>
<thead>
<tr>
<th>Table 2. Contents of Used Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3PDH</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TNF-alpha</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IL-6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COX-2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NOS-II</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Real time PCR의 조건은 다음과 같다: 50℃에서 2분, 94℃에서 10분간 반응하여 pre-denaturation 시킨 뒤, 95℃에서 15초, 60℃에서 1분간 반응하여 40회 반복 수행하였다. SYTG 투여군과 대조군은 internal standard으로 G3PDH를 사용하여 아래의 수식으로 target group의 Quantitative PCR을 정량하여 RQ (relative quantitative) 값을 측정하였다.

\[y = x (1+e)^n \]
\[x = \text{starting quantity}, \ y = \text{yield}, \ n = \text{number of cycles} \]
\[e = \text{efficiency} \]

7) 염증세포와의 밀착
RAW264.7 세포주는 24 well plate에 1×10⁵ 세포로 분주하였다. 여기에 SYTG (100 μg/ml, 50 μg/ml)를 처리하고 1시간 후 LPS 50 μg/ml 각각의 well에 정치한 후 3시간 배양하고 세포를 harvest하여 -20℃의 네온고에 보관한 후 IL-1β, IL-6, TNF-α ELISA kit의 방법에 따라 분석하였다. 450 nm에서 흡광도를 측정하였다.

8) Lipopolysaccharide (LPS)로 유도된 염증 세포 모델
(1) IL-1β, IL-6, TNF-α 생성량 측정
SYTG 투여군은 20 g Balb/c 무개 새끼를 기준으로 경계 9.6 mg을 생리시험수 0.2 ml에 용해시켜 oral zonde를 이용하여 하루에 1회씩 7일간 경구 투여하였다. 7일 후 lipopolysaccharide (LPS) 1 mg/kg을 복주한 후 90분 후에 ethyl ether로 마취하고 심장혈자법으로 체혈하였다. 체혈 후 혈청을 분리하여 IL-1β, IL-6, TNF-α 생성량을 ELISA로 측정하였다. 각 well에 세포의 혈청 100 μl (1/100 dilution)씩 분주한 후 antibody cytokine-biotin conjugated 100 μl을 치
리하고 2시간 실온에서 방치한 후 다시 세척하였다. 2시간 동안 실온에서 방치 한 후 2회washing 완충 용액으로 세척 한 다음 antibody avidin-HRP conjugated 100 μl를 처리하고 2시간 실온에서 방치 한 후 다시 세척하였다. 여기에 TMB 기 질을 100 μl씩 분주하고 양소에서 30분 간 방치한 후 100 μl의 stop 용액을 처리한 후 ELISA reader로 450 nm에서 흡광도를 측정하였다.

(2) 간과 비장 조직에서의 정량적 종
함 효소 얻어 반응
LPS로 유도된 실험 생쥐의 비장 및 간조직 0.1g와 RNAzolB 500 μl를 넣고 용해할 때까지 분쇄하고, 이를 원심분리 후 상층액을 제거하였다. 여기에 RNAzolB 500 μl를 넣고 용해할 때까지 혼합하였으 며, 이를 100% 부유액에 chloroform (CHCl3) 50 μl을 절차한 후 15초간 다시 혼합하 였다. 이를 염용으로 15분간 방치한 후 13,000 rpm에서 원심 분리한 후 약 200 μl의 상층액을 화수하여 2-propanol 200 μl와 동량 혼합 후 천천히 혼들고 염용 에서 15분간 방치하였다. 이를 다시 13,000 rpm에서 원심 분리한 후 80% EtOH로 수세하고 3분간 vacuum pump 에서 건조하여 RNA를 추출하였다. 추출한 RNA는 diethyl pyrocarbonate (DEPC)를 처리한 20 μl의 중류주에 녹여 heating block 75℃에서 불활성화 시킨 후 first strand cDNA 합성에 사용하였다.

9) 통계처리
다양한 실험으로부터 얻은 결과는 mean±standard error로 기록하였고, 유의성 검증은 Student’s T-test 분석 방법을 이용하여 결정하였다.

III. 실험 성적

1. 안정성 검사
1) 세포독성에 미치는 영향
세포독성을 관찰한 결과 mLFCs에서 는 대조군의 세포생존율 100.0 ± 6.5%에 대하여, SYTG의 200, 100, 50, 10, 1 μg/ml 농도에서 각각 83.6 ± 4.7, 86.4 ± 5.9, 92.4 ± 4.8, 98.6 ± 5.8, 99.5 ± 5.0%로 나타났다(Fig. 1).

![Fig. 1. Cytotoxicity of SYTG on mouse lung fibroblast Cells (mLFCs). mLFCs were treated with various concentration (200, 100, 50, 10, 1 μg/ml) of the SYTG.](image)

2) 간독성 검사
간 기능 측정의 지표 성분인 GOT는 정상군이 153 ± 31.6 IU/l, SYTG 투여 군에서는 140 ± 41.9 IU/l로 나타났다. GPT 수치에서는, 정상군이 50.2 ± 7.0 IU/l, SYTG 투여군에서 60.6 ± 7.7 IU/l로 나타났다. SYTG 투여군은 GOT와 GPT의 수치가 정상 범위로 나타나 약물에 의한 간 독성을 발견되지 않았다(Fig. 2).
2. 향산화 활성에 미치는 영향

1) DPPH 수소증 빠짐
DPPH의 수소 활성은 SYTG 1000, 500, 250, 125, 62.5 μg/ml 농도에서 각각

2) SOD 유산활성 측정
SOD의 수소활성은 SYTG 1000, 500, 250, 125, 62.5 μg/ml 농도에서 각각 24.95 ± 4.85

3) SAR 수소활성 측정
SAR의 유사환성은 SYTG 1000, 500, 250, 125, 62.5 μg/ml 농도에서 각각 43.04 ± 4.30, 35.98 ± 2.09, 31.39 ± 5.62, 21.63 ± 4.55, 13.48 ± 5.22%의 소거 활성 효과를 나타내었다 (Fig. 5).

Fig. 4. Scavenging activity of SYTG on Superoxide dismutase.
SYTG were reacted with tris-HCl buffer (pH 8.5) 2.6 ml and 7.2 mM pyrogallol 0.2 ml for 10 minutes at 25°C, and the absorbance at 420 nm to 1 N HCl 0.1 ml was determined. The results are the mean ± SD of three independent experiments.

Fig. 5. Scavenging activity of SYTG on Superoxide anion radical.
SYTG were reacted with 50mM phosphate buffer (pH 7.8, 0.1 mM EDTA) 2.5 ml and 2 mM xanthine 0.2 ml and 1mM NBT (nitro blue tetrazolium) 0.1 ml for 15 minutes with xanthine oxidase 0.2 unit/ml, and the absorbance at 550 nm. The results are the mean ± SD of three independent experiments.
3. RAW264.7 세포주에서 염증 쌍회 카인 유전자 발현에 미치는 영향
1) IL-1β 유전자 발현
RAW264.7 세포주에서 IL-1β 유전자 발현의
RQ 값은, 정상군이 0.886 ± 0.029,
대조군이 1.02 ± 0.02, CSA는 0.220 ± 0.061
로 나타났으며, SYT G 100, 50, 10 μg/ml
농도 투여군에서는 각각 0.293 ± 0.069,
0.658 ± 0.144, 1.095 ± 0.106의 RQ 값들을
 나타내며 대조군에 비해 100, 50 μg/ml
에서 유의성이 있는 (***p<0.001, *p<0.05)
역제 효과를 나타내었다(Fig. 6).

Fig. 6. Inhibitory effects of SYT G on
IL-1β mRNA expression in RAW264.7
cell line.
RAW264.7 세포주에 SYT G 100, 50, 10 μg/ml
in the presence or absence of lipopolysaccharide
(LPS: 2 μg/ml) for 6 hrs. IL-1β mRNA
synthesized by real-time PCR was analyzed.
Statistically significant value compared with
normal by T test (***p<0.001). Statistically
significant value compared with control by
T test (*p<0.05, ***p<0.001).

2) IL-6 유전자 발현
RAW264.7 세포주에서 IL-6 유전자 발현의
RQ 값은, 정상군이 0.315 ± 0.09,
대조군이 1.073 ± 0.073, CSA는 0.203 ± 0.006
로 나타났으며, SYT G 100, 50, 10 μg/ml
농도 투여군에서는 각각 0.372 ± 0.046,
0.56 ± 0.046, 0.655 ± 0.063의 RQ 값을
 나타내며 대조군에 비해 모든 농도에서 농도에
의존적으로 유의성이 있는 (***p<0.001,
*p<0.05) 역제 효과를 나타내었다(Fig. 7).

Fig. 7. Inhibitory effects of SYT G on
IL-6 mRNA expression in RAW264.7
cell line.
RAW264.7 세포주에 SYT G 100, 50, 10 μg/ml
in the presence or absence of lipopolysaccharide
(LPS: 2 μg/ml) for 6 hrs. IL-6 mRNA
synthesized by real-time PCR was analyzed.
Statistically significant value compared with
normal by T test (***p<0.001). Statistically
significant value compared with control by
T test (**p<0.01, ***p<0.001).

3) TNF-α 유전자 발현
RAW264.7 세포주에서 TNF-α 유전자 발현의
RQ 값은, 정상군이 0.027 ± 0.007,
대조군이 1.006 ± 0.006, CSA는 0.238 ± 0.06
로 나타났으며, SYT G 100, 50, 10 μg/ml
농도 투여군에서는 각각 0.314 ± 0.066,
0.439 ± 0.02, 0.538 ± 0.12의 RQ 값을
 나타내며 대조군에 비해 100, 50 μg/ml 농도
에서 유의성이 있는 (***p<0.001, **p<0.01)
역제 효과를 나타내었다(Fig. 8).

4) COX-2 유전자 발현
RAW264.7 세포주에서 COX-2 유전자 발현의
RQ 값은, 정상군이 0.202 ± 0.06,
대조군이 1.106 ± 0.106, CSA는 0.28 ± 0.055로
나타났으며, SYT G 100, 50, 10 μg/ml
농도 투여군에서는 각각 0.52 ±
0.077, 0.525 ± 0.144, 0.685 ± 0.028의 RQ 값을 나타내어 대조군에 비해 모든 농도에서 유의성 있는 (***p<0.001, **p<0.01) 억제 효과를 나타내었다(Fig. 9).

5) NOS-II 유전자 발현
RAW264.7 세포주에서 NOS-II 유전자 발현의 RQ 값은, 정상군이 0.13 ± 0.045, 대조군이 1.067 ± 0.067, CSA는 0.122 ± 0.042로 나타났으며, SYTGM 100, 50, 10 μg/ml 농도 부여군에서는 각각 0.734 ± 0.056, 0.724 ± 0.027, 0.842 ± 0.026의 RQ 값을 나타내어 대조군에 비해 모든 농도에서 유의성 있는 (***p<0.001, **p<0.01, *p<0.05) 억제 효과를 나타내었다(Fig. 10).

4. RAW264.7 세포주에서 염증 사이토카인 생성방에 미치는 영향
1) IL-1β 생성량
RAW264.7 세포주에서 IL-1β 생성량은
정상군은 38.5 ± 18.2 pg/ml, 대조군은 701.0 ± 58.4 pg/ml, SYTG 100 μg/ml는 458.0 ± 60.8 pg/ml, SYTG 50 μg/ml 부여군은 582.0 ± 83.4 pg/ml로, 대조군에 비하여 100 μg/ml 농도에서 유의성을 있는 (*p<0.05) 역제 효과를 나타내었다(Fig. 11).

2) IL-6 생성량
RAW264.7 세포주에서 IL-6 생성량은 정상군은 363.0 ± 77.8 pg/ml, 대조군은 602.0 ± 729.7 pg/ml, SYTG 100 μg/ml는 321.0 ± 585.5 pg/ml, SYTG 50 μg/ml 부여군은 4650.0 ± 704.3 pg/ml로, 대조군에 비하여 100 μg/ml 농도에서 유의성을 있는 (*p<0.05) 역제 효과를 나타내었다(Fig. 12).

3) TNF-α 생성량
RAW264.7 세포주에서 TNF-α 생성량은 정상군은 272.5 ± 81.3 pg/ml, 대조군은 3243.5 ± 392.4 pg/ml, SYTG 100 μg/ml는 1655.0 ± 131.5 pg/ml, SYTG 50 μg/ml 부여군은 2416.0 ± 109.3 pg/ml로, 대조군에 비하여 100, 50 μg/ml 농도에서 유의성 있는 (***p<0.01, *p<0.05) 역제 효과를 나타내었다(Fig. 13).

Fig. 11. Effect of SYTG on the levels of IL-1β in the RAW264.7 cell. RAW264.7 cell was collected from the retro-orbital plexus under ether anesthesia and serum was obtained by 10,000 rpm centriﬁcation and stored at -20°C until use. The levels of IL-1β were determined using a commercially available ELISA kit. Statistically signiﬁcant value compared with normal by T test (**p<0.001). Statistically signiﬁcant value compared with control by T test (*p<0.05).

Fig. 12. Effect of SYTG on the levels of IL-6 in the RAW264.7 cell. RAW264.7 cell was collected from the retro-orbital plexus under ether anesthesia and serum was obtained by 10,000 rpm centriﬁcation and stored at -20°C until use. The levels of IL-6 were determined using a commercially available ELISA kit. Statistically signiﬁcant value compared with normal by T test (+++p<0.001). Statistically signiﬁcant value compared with control by T test (*p<0.05).

Fig. 13. Effect of SYTG on the levels of TNF-α in the RAW264.7 cell. RAW264.7 cell was collected from the retro-orbital plexus under ether anesthesia and serum was obtained by 10,000 rpm centriﬁcation and stored at -20°C until use. The levels of TNF-α were determined using a commercially available ELISA kit. Statistically signiﬁcant value compared with normal by T test (+++p<0.001). Statistically signiﬁcant value compared with control by T test (*p<0.05, *p<0.01).

80
5. 금성 염증성 질환 생쥐 모델의 혈청 내 세이토카인 변화에 미치는 영향

1) IL-1β 생성량

혈청 내 IL-1β 생성량을 측정한 결과, 정상군은 50.3 ± 11.24 pg/ml, 대조군은 75.8 ± 0.42 pg/ml로 나타난 반면, SYTG 투여군에서는 62.5 ± 5.4 pg/ml로 나타나 대조군에 비하여 유의성 있는 (*p<0.05) 역제 효과를 나타내었다(Fig. 14).

2) IL-6 생성량

혈청 내 IL-6 생성량을 측정한 결과, 정상군은 153.0 ± 12.3 pg/ml, 대조군은 497.0 ± 0.84 pg/ml로 나타난 반면, SYTG 투여군에서는 454.0 ± 12.4 pg/ml로 나타나 대조군에 비하여 유의성 있는 (***p<0.001) 역제 효과를 나타내었다(Fig. 15).

6. 금성 염증성 질환 생쥐 모델의 비장 및 간 조직 내 세이토카인 변화에 미치는 영향

1) IL-1β mRNA 발현량

비장 및 간 조직 내 IL-1β mRNA 생성량을 측정한 결과, 간조직에서 정상군은 0.088 ± 0.014 pg/ml, 대조군은 1.066 ± 0.006 pg/ml로 나타난 반면, SYTG 투여군에서는 0.818 ± 0.029 pg/ml로 나타나 대조군에 비하여 유의성 있는 (***p<0.001) 역제 효과가 나타났다. 비장조직에서 정상군은 0.064 ± 0.010 pg/ml, 대조군은 0.995 ± 0.006 pg/ml로 나타난 반면, SYTG 투여군에서는 0.599 ± 0.085 pg/ml로 나타나 대조군에 비하여 유의성 있는 (**p<0.01) 역제 효과가 나타났다(Fig. 16).
0.0 0.2 0.4 0.6 0.8 1.0 1.2
LPS - + + +
Liver Spleen

0.0 0.2 0.4 0.6 0.8 1.0 1.2
LPS - + + +
Liver Spleen

2) IL-6 mRNA 발현량

비장 및 간 조직에서 IL-6 mRNA 생성량을 측정한 결과, 간조직에서 정상군은 0.196 ± 0.008 pg/ml, 대조군은 1.051 ± 0.051 pg/ml로 나타났으며, SYTG 투여군에서는 0.988 ± 0.011 pg/ml로 나타나 대조군에 비하여 유의성이 있는 (**)p<0.01) 억제 효과가 나타났다. 비장조직에서 정상군은 0.290 ± 0.045 pg/ml, 대조군은 0.989 ± 0.011 pg/ml로 나타난 반면, SYTG 투여군에서는 0.893 ± 0.004 pg/ml로 나타나 대조군에 비하여 유의성이 있는 (***)p<0.001) 억제 효과가 나타났다(Fig. 17).

IV. 고찰

聖意湯은 李1)의 《蘭室秘藏·療傷門》에 처음 수록된 처방으로 態態에 출혈이 과다하여 心顚不安한 증상을 치료한다고 하였고, 《醫宗金鏡·剔痔名醫方論》2)에서 의의의 출혈 과다로 인하여 발생된 陰鬱氣弱의 증상을 치료한다고 하였다. 2,3) 이후 聖意湯은 四物湯에 人参, 黃芪를 가하여, 氣血, 攝血하는 효능을 강화시킨 처방으로 4) 임상에서 氣血兩虛 증상에 널리 응용되며, 特히 月經 變症, 氣血不統, 産後 惡露不下, 産後腹痛 등의 다양한 부인과 친자에서 氣血兩虛 증상에 응용되는 대표적 처방이다. 5,7,20)

한의학에서는 《素問》〈上古天真論〉에서 “真氣從之精神內守 病安從來” 〈刺法論〉에서 “五穀之氣 ……正氣存内 邪

炎症은 조직이 손상을 받았을 때 손상을 국소화시키고 손상된 부위를 정상상태로 되돌리려는 생체의 자기방지체계인 면역계의 일부로서 병조직을 분해할 수 있다[14,15]. 또한, 炎症은 손상부위의 혈관, 신경, 세포, 혈액의 반응이 서로 복잡하게 관여되어 발생부위에 發赤, 發熱, 疼痛, 噴血, 機能障礙과 같은 종류가 나타난다[16].

이러한 염증의 원인은 염증, 出血, 寒熱, 腫塊 등을 주요증상으로 하는 腫血의 病態와 유사하며, 腫血이란 생리적 기능을 상실한 혈액이 정상화하여 형성된 염증의 병리적 증상물이 동시에 발생하자, 이로 인하여 在的 腫血이란 病態와 마찬가지로 염증을 일으키며, 혈액의 순환을 통해, 염증이 생길 수 있다[17]. 또한, 腫血은 정상혈관을 포함하여, 血液의 순환에 영향을 미치는 요소를 갖는다[18]. 因此, 腫血는 腫血의 病態와 유사하며, 腫血이란 病態와 마찬가지로 염증을 일으키며, 혈액의 순환을 통해, 염증이 생길 수 있다[19]. 또한, 腫血은 정상혈관을 포함하여, 血液의 순환에 영향을 미치는 요소를 갖는다[18]. 因此, 腫血는 腫血의 病態와 유사하며, 腫血이란 病態와 마찬가지로 염증을 일으키며, 혈액의 순환을 통해, 염증이 생길 수 있다[19].
각 항산화 효과를 알아보기 위해서 항산화 활성에 미치는 영향, RAW264.7 세포 주에서 염증 관련 cytokine의 유전자 발현 및 생성에 미치는 영향, 급성 염증성 질환 생쥐 모델의 치료시, 비장 및 간 조직 cytokine 변화에 미치는 영향 등에 대해 실험하였으며 그 결과 유의한 성적을 얻었기에 보고하는 바이다.

실험에 앞서 SYTG의 안전성 평가를 위해 mLFs의 생존율과 SD계 환귀에 10일간 약물을 투여한 실험군의 혈청 GOT, GPT 활성을 측정하였다. mLFs의 생존율 측정에서 SYTG 200, 100, 50, 10, 1 μg/μl 투여군에서 모두 대조군(정상군)과 비교하여 세포생존율에 유의한 차이가 없었으며(Fig. 1), SYTG 투여군의 GOT 및 GPT의 수치에서는 모든 농도에서 대조군(정상군)과 비교하여 정상 범위로 나타났다. 따라서 SYTG는 200 μg/ml 농도까지는 세포독성을 안전할 것으로 사료되며, 건 독성저고분적인 실험에서 주장되여서 최대 200 μg/ml농도까지는 안전한 것으로 나타났다(Fig. 1, 2).

염증반응은 그 원인과 반응조직의 차이에 상관없이 거의 유사한 조직학적 변화를 보인다[5]. 이러한 현상은 손상에 의하여 세포 내 국소발생에 유리되는 공통적인 물질요인의 존재를 추정케 하는데 이러한 화학적 메커니즘은 항산소산화적전도(NO), prostaglandin(이하 PG), 염증을 유발시키는 여러 cytokine 등이 있다[5].

이러한 염증 매개 인자 중, 염증반응으로 인한 자극을 통하여 대식세포와 호중구에서 생성되는 항산소산소중은 세포 내에서 많은 세포구성요소와 반응하여 끊임없이 세포 고분자들을 공격하여 건국에는 광대범위 피부진단, 급성 염증성 화형, 다발성 경화증, 노인성 피부를 비롯하여 병이, 노화, 발암 등과 같은 심각한 손상을 일으킨다[5, 6].

이러한 활성산소의 피해로부터, 생체 조절을 보호하기 위해서, 활성산소의 유리기 중 역사와 반응하기 전에 인체에 무해한 형태로 바꾸고, 다른 문자들로부터 자유 유리기의 형성을 억제시키는 항산화제의 사용이 일반적이다[7]. 유리기 소거작용은 활성라디칼(free radical)에 전자를 공여하여 항산화 효과를 나타내는 작용으로 해석될 수 있으며. 유리기의 소거율은 항산화효능의 정도로서 이용된다[8].

DPPH는 안정한 유리기로 cysteine, glutathione과 같은 항산화 암이노산과 aromatic amine 등에 의해 활성화되어 투석되고, 비교적 간단하여 항산화제 측정에 많이 이용되고 있다[9].

또한 장기적인 산화적 인산화의 과정 동안 소모되는 전체 산소의 0.4~4% 정도는 free radical anion superoxide (O2•−)로 전환하며, 생성된 O2•−는 다른 화학재료로 전환되어 적정적 또는 간격적으로 세포손상을 유발한다[10]. 작용적으로는 O2•−는 내산성 화학 반응기전인 superoxide dismutase(SOD)에 의해 빠르게 과산화수소로 전환되어 세포내 산화 및 환원균형을 유지한다[11]. 따라서 radical anion superoxide의 소거활성 및 SOD 유사활성성 억제 산화적 손상을 억제하는 항산화제 측정에 많이 이용된다[12].

SYTG의 항산화 효과를 입증하기 위하여, DPPH 소거활성, superoxide dismutase (SOD) 유사활성 및 superoxide anion radical 소거활성을 SYTG 농도별로 측
정한 결과, SOD 유사활성 측정에서의 SYTG 250 μg/ml 처리 군을 제외한 나머지 모든 경우에서 농도 의존적으로 항산화 활성 효과를 나타내었다(Fig. 3, 4, 5).

내독소로 자극 얻어진 lipopolysaccharide (LPS)는 RAW264.7 세포와 같은 macrophage 또는 monocyte에서 Interleukin(IL)-1α, IL-1β, IL-6, transforming growth factor (TNF)-α와 같은 pro-inflammatory cytokine을 증가시키는 것으로 알려져 있다. 또한 이들 염증성 물질의 혈청은 phospholipase A2의 활성화를 인해 arachidonic acid라 prostaiglandins(PG)으로 바뀌는 과정 및 NO형성과정으로 이어지게 된다[51].

면역과 염증에 관련되어 여러 cytokine 중 IL-1β, IL-6 및 TNF-α는 대식세포에서 생산되는 대표적인 염증성 cytokine으로, IL-6는 B-cell과 T-cell의 증식과 분화를 촉진시키며 면역계와 조절계에 다양한 기능을 나타내는데, 면역계에서 면역반응, 급성기 반응과 hemotopoiesis를 조절하는 역할과 함께 host defense mechanism에서 중요한 역할을 담당한다[52,53].

TNF-α는 대식세포와 비만세포 등에서 분비되어 염증세포에서 염증유발 작용과 세포의 증식과 분화를 조절한다. 또한 중성구를 자극하여 탐식작용과 탈극도 등을 증가시키는 등 염증반응에서 중요한 역할을 하는 최근에는 TNF-α를 차단하는 약물들이 염증의 치료체로 연구되고 있다[54,55].

Cyclooxygenase(COX)는 arachidonic acid를 PGs로 전환하는 효소로 COX-1과 COX-2로 분류된다. COX-1은 세포에서 혈소판의 혈청, 위벽보호, 신장기능의 유지 등 정상적인 생체기능에 작용하며, COX-2는 염증반응물질인 PGE2를 형성시킨다. PGE2는 혈관의 수축작용과 염증반응에 관여하여 조직진동이나 인신 증상중 그리고 여러 여성생식기 장염 및 종양에서 비정상적으로 발현된다고 알려져 있다[55,56].

Nitric oxide(이하 NO)는 혈관에서 강력한 혈관확장 작용을 하며 혈소판 응집을 저해하고 중성구나 혈소판이 혈관내피세포에 부착하는 것을 막는 역할을 하지만[57], 염증반응에서 iNOS에 의해 생성된 NO는 혈관내피성, 부종등의 염증반응을 촉진시키려 타액 이상 염증반응의 생합성을 촉진하여 염증을 심화시키는 것으로 알려져 있다[58,59].

Nitric oxide synthesis(이하 NOS)는 L-arginine을 NO로 산화시키는 일종의 산화효소이다. NOS는 혈관내피세포성 NOS, 신경세포성 NOS 및 유도성 NOS(이하 iNOS)의 세 가지 아형으로 구분하는데, 이 중 iNOS는 염증성 cytokine이나 LPS 등에 반응하여 분비된다[57].

SYTG의 항염증 효과에 대한 연구에서 대표적인 염증성 cytokines인 IL-1β, IL-6 및 TNF-α의 유전자 발현에 미치는 영향을 RT-PCR로 평가한 결과, IL-1β에서는 SYTG 10 μg/ml 투여군을 제외한 SYTG 100, 50 및 10 μg/ml 처리군 모두에서 각각 대조군에 비해 농도 의존적으로 하락하였다(Fig. 6, 7, 8).

SYTG를 처리한 RAW264.7 세포주에서 염증반응을 촉진시키는 PG와 NO의 형성기는 효소인 COX-2와 NOS-2의 유전자 발현에 미치는 영향을 알아본 결과, SYTG 100, 50 및 10 μg/ml 투여군 모두에서 각각 대조군에 비해 농도 의존적으로 COX-2와 NOS-2의 유전자 발
현을 얻게 되었다(Fig. 9, 10).

또한 SYTG를 처리한 RAW264.7 세포 주에서 IL-1β, IL-6 및 TNF-α의 생성량을 측정한 결과, IL-1β와 IL-6의 생성량에서 SYTG 부여군 100 μg/ml 농도에서 대조군에 비하여 유의성 있는(P<0.05) 억제 효과를 나타내었고(Fig. 10, 11). TNF-α의 생성량에서는 대조군에 비하여 100, 50 μg/ml 농도에서 유의성 있는(**p<0.01, *p<0.05) 억제 효과를 나타내었다(Fig. 11, 12, 13).

급성 염증성 식관 생쥐 모델을 이용한 SYTG의 항염증 효과에 대한 연구에서 는 혈청 내 cytokine의 생성량과 비장 및 간 조직 내 cytokine의 유전자 발현에 미치는 영향을 알아보았는데, 먼저 혈청 내 IL-1β, IL-6의 생성량을 측정한 결과 IL-1β, IL-6의 생성량에서 대조군에 비하여 유의성 있는(P<0.05, 0.001) 억제 효과를 나타내었다(Fig. 14, 15).

비정상 조직에서의 IL-1β, IL-6의 유전자 발현에 미치는 영향을 알아본 결과, IL-1β, IL-6의 생성량에서 대조군에 비하여 유의성 있는(P<0.01, 0.001, P<0.001, 0.01) 억제 효과를 나타내었다(Fig. 16, 17).

이상의 실험적 연구 결과를 종합해 볼 때, SYTG는 유혈성각약의 항염증 및 항산화 효과가 인정되어, 합병증에서 다양한 염증성 집단 및 산화적 손상으로 인한 질환에 유호하게 응용될 수 있을 것으로 사료된다.

V. 결 론

신여황제진제(SYTG)의 항산화 및 항염증 효과의 규명을 위해서 항산화 활성에 미치는 영향, 염증관련 cytokines의 생성량 및 유전자 발현에 미치는 영향. 급성 염증성 집단 생쥐 모델에서의 cytokine 변화에 미치는 영향 등을 관찰한 결과는 다음과 같다.

1. SYTG는 200 μg/ml 농도까지 mLFCs에 대해 세포독성을 가지지 않았으며, SD계 원쥐 혈청의 간 독성치료물질에 대해서도 최대 200 μg/ml 농도까지 안전하였다.

2. SYTG는 농도가 증가함수록 높은 DPPH 소거활성, superoxide anion radical 소거활성을 보였으며, 1000, 500, 125, 62.5 μg/ml 농도에서 SOD 유사활성을 보여, 항산화효과가 있는 것으로 나타났다.

3. SYTG는 RAW264.7 세포주에서 IL-1β, IL-6, TNF-α, COX-2 및 NOS-II의 유전자 발현을 대조군에 비해 농도 의존적으로 억제하였다.

4. SYTG는 RAW264.7 세포주에서 IL-1β와 IL-6 생성량을 100 μg/ml의 농도에서 대조군에 비해 유의성 있게 억제하였고, TNF-α 생성량을 100, 50 μg/ml의 농도에서 대조군에 비해 유의성 있게 억제하였다.

5. SYTG는 급성 염증 유발 생쥐의 혈청 내 IL-1β, IL-6의 생성을 대조군에 비해 유의성 있게 억제하였다. 비정상 조직에서의 유전자 발현에서도 IL-1β, IL-6의 생성량을 대조군에 비해 유의성 있게 억제하였다.

이상의 실험 결과로 보아 SYTG는 항산화 및 항염증 효과가 인정되므로, 염증지식과 염증질환 및 기능성 보강을 위한 부인과
참고문헌

10. 蔡浩然, 鄭鎬鎬, 金東熙, 加味八珍湯이
 免疫調節作用에 미치는 영향, 대韓
11. 蔡禹錫, 免疫疾患의 韓方概念과 治療
 에 關한 文獻의 考察, 大韓
12. 黃義玉 등, 免疫學에 關한 文獻의 考察.
13. 趙鍾右, 免疫에 關한 東洋醫學의 考
14. 安全生 등. Homeostasis와 免疫反應
 調節論의 抗疫承制論의 解析, 大韓
15. 大韓映寫學會, 映寫學II, 首爾: 京都社,
16. 靑文社. 韓邦黃帝內經素問, 首爾: 東
17. 湯鶴鶴, 中和學術論文集, 部分的生
22. 全國韓醫科大學 本草學教授 共編. 本
23. 孫元, 梁堅, 薬学, 首爾: 部門の 術
25. 沈廷俊 등. 某種的 Acetylcholinesterase
35. 張憲仲. 邑經全書. 集文書局. 1972:172-173, 228, 236.
42. 양의아 등. 中的學門類(上). 北京: 人民衛生出版社. 1985:118.
44. 唐宗海. 血構論. 力行書局有限公司. 1984:115-120.

