DOI QR코드

DOI QR Code

Effect of New Calcium Supplementary Food Containing Fermented Product of Bacillus on the Longitudinal Bone Growth in the Adolescent Male Rats

바실러스 발효대사물이 함유된 신규 칼슘보충용식품의 성장기 쥐 장골 성장촉진효과

  • 이재연 ((주)바이오토피아 부설생명과학연구소) ;
  • 박영식 ((주)바이오토피아 부설생명과학연구소) ;
  • 김영훈 (수원대학교 생명공학과) ;
  • 오경환 (수원대학교 생명공학과) ;
  • 황교열 ((주)바이오토피아 부설생명과학연구소) ;
  • 조용석 ((주)바이오토피아 부설생명과학연구소) ;
  • 강경돈 ((주)바이오토피아 부설생명과학연구소) ;
  • 김근 (수원대학교 생명공학과) ;
  • 주동관 ((주)엠에스바이오텍) ;
  • 성수일 ((주)바이오토피아 부설생명과학연구소)
  • Published : 2008.12.31

Abstract

This study was conducted to investigate the effect of administration of calcium supplementary food containing fermented product of Bacillus subtilis SE4 highly producing poly-$\gamma$-glutamic acid on the growthparameters of adolescent male rats. Four-week old male Sprague-Dawley (SD) rats were fed for 4 weeks and assigned to the following 4 groups: two groups administered orally with new calcium supplementary food (such as 150 mg/kg and 300 mg/kg) containing fermented product of B. subtilis SE4, one group administered with conventional calcium supplementary food product (150 mg/kg) and one saline group as control. Daily weight gain and daily food intake in the two new food product groups were higher than those of conventional food product group and control group. Especially, the content of serum IGF-I in the two new food product groups were significantly higher than those in conventional food product group and in control group (p<0.05). In addition, length and weight of longitudinal bone in the two new food product groups were longer and heavier than those of conventional food product group and control group. Therefore, the addition of fermented food product of B. subtilis SE4 into the conventional calcium supplementary food increased all the parameters examined for the growth of the adolescent male rats.

기존 칼슘보충용식품의 성장촉진효능을 증진시키기 위하여 칼슘흡수 관여 물질인 $\gamma$-PGA를 다량 생산하는 Bacillus subtilis SE4 균주를 선발하였다. 선발된 B. subtilis SE4의 발효대사물을 기존 칼슘보충용식품에 첨가하여 성장기 수컷 흰쥐에 28일간 경구투여 한 결과 발효대사물이 첨가된 신규칼슘보충용식품군에서 혈청 내 IGF-I 함량이 대조군이나 기존칼슘보충용식품군에 비해 유의적으로 높게 나타났다(p<0.05). 일일증체량, 일일사료섭취량, 장골길이, 장골 무게, 장골폭 등의 성장관련 지표에서도 장골의 길이와 일부 부위별 두께에서의 유의적 결과를 포함하여 전반적으로 신규칼슘보충용식품군이 대조군과 기존칼슘보충용식품군에 비해 양호한 성적을 나타내었다. 이러한 결과는 기존칼슘 보충용 식품에 발효대사물을 첨가함으로써 나타난 칼슘의 생체흡수율 증대 및 성장호르몬의 분비활성화 등 여러 성장 관련요인들이 흰쥐 성장에 긍정적으로 작용한 때문으로 생각되어진다.

Keywords

References

  1. Crofton PM, Wade JC, Taylor MRH, Holland CV. 1997. Serum concentration of carboxyl-terminal propeptide of type I procollagen, amino-terminal propeptide of type III procollagen, cross-linked carboxyl-terminal telopeptide of type I collagen, and their interrelationships in schoolchildren. Clin Chem 43: 1577-1581
  2. Stevens DA, Williams GR. 1999. Hormone regulation of chondrocyte differentiation and endochondral bone formation. Mol Cell Endocrinol 151: 195-204 https://doi.org/10.1016/S0303-7207(99)00037-4
  3. Choi MJ, Yoon JS. 2003. The effect of eating habits and nutrient intake on the physical growth indices in preschool children. Korean J Community Nutrition 8: 3-14
  4. Kim SE. 1993. Impact of fast food on balanced nutrients intake among Korean young generation. Part 1. KOSEF 911-1509-079-2
  5. The Korean Nutrition Society. 2005. Dietary reference intake for Koreans
  6. Ministry of Health and Welfare. 2006. The 3rd Korea National Health and Nutrition Examination Survey (KNHANES III), 2005-nutrition survey
  7. Juul A, Kastrup KW, Pedersen SA, Skakkebaek NE. 1997. Growth hormone (GH) provocative retesting of 108 young adults with childrenhood-onset GH deficiency and the diagnostic value of insulin-like growth factor I (IGF-I) and IGF-binding protein-3. J Clin Endocrinol Metab 82: 1195-2101 https://doi.org/10.1210/jc.82.4.1195
  8. Roith DL. 1997. Insulin-like growth factors. N Engl J Med 336:633-640 https://doi.org/10.1056/NEJM199702273360907
  9. Ueno T, Mizukawa N, Sugahara T. 1999. Experimental study of bone formation from autogenous periosteal graft following insulin-like growth factor I administration. J Cranio-Maxillofacial Surgery 27: 308-313 https://doi.org/10.1054/jcms.1999.0077
  10. Woods KA, Camavho-Hybner C, Bergman RN, Barter D, Clark AJL, Savage MO. 2000. Effects of insulin-like growth factor I (IGF-I) therapy on body composition and insulin resistance in IGF-I gene deletion. J Clin Endocrinol Metab 85: 1407-1411 https://doi.org/10.1210/jc.85.4.1407
  11. Leem KH, Kim HC. 2001. Effect of Cibotium baromets on the growth of longitudinal bone in adolescent male rats. Kor J Herbology 16: 49-55
  12. Leem KH, Jeon H. 2001. Effect of Diasacus asper on th growth of longitudinal bone in adolescent male rats. Korean J Oriental Physiology & Pathology 15: 983-988
  13. Park SY, Leem KH, Kim HC. 2003. Effects of Acanthopanacis Senticosi Radix and its subfractions on longitudinal bone growth of adolescent rats. Kor J Herbology 18: 87-92
  14. Yang DS, Cha MH, Kang BJ, Oh SW, Kim YE, Yoon YS. 2003. A study on the longitudinal bone growth of growthstimulating material with Eleutherococcus senticosus. Korean J Food Sci Technol 35: 702-707
  15. Jung DY, Lee HY, Ha HK, Jung DY, Kang SS, Kim CS. 2003. Induction of growth hormone release by the extracts of Lonicera japonica Thunb. Kor J Pharmacogn 34: 256-262
  16. Heaney RP, Weaver CM, Fizsimmons ML. 1991. Soybean phytate content: Effect of calcium absorption. Am J Clin Nutr 53: 745-747 https://doi.org/10.1093/ajcn/53.3.745
  17. Kim YJ, Lee KW, Lee HJ. 2003. Increase of conjugated linoleic acid level in milk fat by bovine feeding regimen and urea fractionation. J Microbiol Biotechnol 13: 22-28
  18. Loennerdal B, Sandberg AS, Sandstroem B, Kunz C. 1989. Inhibitory effects of phytic acid and other inositol phosphate on zinc and calcium absorption in suckling rats. J Nutr 119: 211-214 https://doi.org/10.1093/jn/119.2.211
  19. Pingle U, Ramasastri BV. 1978. Absorption of calcium from a leafy vegetable rich in oxalates. Br J Nutr 39: 119-125 https://doi.org/10.1079/BJN19780018
  20. Yamanaka S. 1991. New gamma-polyglutamic acid, production therefore and drinking agent containing the same. JP patent 3047087
  21. Park C, Choi YH, Shin HJ, Poo H, Song JJ, Kim CJ, Sung MH. 2005. Effect of high-molecular-weight poly-${\gamma}$-glutamic acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal absorption. J Microbiol Biotechnol 15: 855-858
  22. Goto A, Kunioka M. 1992. Biosynthesis and hydrolysis of poly(${\gamma}$-glutamic acid) from Bacillus subtilis IFO 3335. Biosci Biotechnol Biochem 56: 1031-1035 https://doi.org/10.1271/bbb.56.1031
  23. Agwuh KN, MacGowan A. 2006. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylclines. J Antimicrob Chemother 58: 256-265 https://doi.org/10.1093/jac/dkl224
  24. Tanimoto H, Mori M, Motoki M, Toru K. 2001. Natto mucilage containing poly-${\gamma}$-glutamic acid increases soluble calcium in rat small intestine. Biosci Biotechnol Biochem 65: 516-521 https://doi.org/10.1271/bbb.65.516
  25. Li C, Price JE, Milas L, Hunter NR, Ke S, Tansey W, Charnsagavej C, Wallace S. 1999. Antitumor activity of poly(L-glutamic acid)-paclitaxol on syngeneic and xeongrafted tumors. Clin Cancer Res 5: 891-897
  26. Spenard J, Aumais C, Massicotte J, Brunet J-S, Tremblay C, Grace M, Lefebve M. 2005. Effects of food and formulation on the relative bioavailability of bismuth biskalcitrate, metronidazole, and tetracycline given for Helicobacter pylori eradication. Br J Clin Pharmacol 60: 374-377 https://doi.org/10.1111/j.1365-2125.2005.02441.x
  27. Lee YK, Lee MY, Kim MK, Choe WK, Kim SD. 2004. Effects of calcium lactate and chungkukjang on calcium status in rat. J Food Sci Nutr 9: 45-52 https://doi.org/10.3746/jfn.2004.9.1.045
  28. Rosen HN, Chen V, Cittadini A, Greenspan SL, Douglas PS, Moses AC, Beamer WG. 1995. Treatment with growth hormone and IGF-1 in growing rats increases bone mineral content but not bone mineral density. J Bone Miner Res 10: 1352-1358 https://doi.org/10.1002/jbmr.5650100912
  29. Guler HP, Zapf J, Scheiwiller E, Froesch ER. 1988. Recombinant human insulin-like growth factor I stimulates growth and has distinct effects on organ size in hypophysectomized rats. Proc Natl Acad Sci USA 85: 4889-4893 https://doi.org/10.1073/pnas.85.13.4889