DOI QR코드

DOI QR Code

Characteristics of Volatile Flavor Compounds of Fuji Apples by Different Extraction Methods

추출방법에 따른 후지사과의 휘발성 향기성분 특성

  • Published : 2008.12.31

Abstract

The characteristics of volatile flavor compounds of Fuji apples were compared by different extraction methods for information leading to a natural fragrance development. The volatile flavor components of Fuji apples were extracted using simultaneous steam distillation and extraction (SDE), solvent extraction (SE), and solid-phase microextraction (SPME) methods and then analyzed by gas chromatograph-mass spectrometer. A total of 66, 32 and 54 components were identified in SDE, SE and SPME extracts, respectively. (E,E)-$\alpha$-Farnesene, hexanol, butanol, 2-methyl butanol, hexyl hexanoate, hexyl 2-methyl butanoate, hexyl butanoate, and butyl hexanoate were the major flavor components in the extracts by different methods, but the composition of volatiles in the extracts were different. Alcohols and hydrocarbons were the major functional groups in SDE and SE extract whereas esters and hydrocarbons were the major functional groups in SPME extracts. SPME was the most suitable method for analysis of fresh volatiles from Fuji apples.

본 연구에서는 후지사과를 이용하여 천연향료를 개발하기 위한 기초자료로 활용하고자 추출방법에 따른 사과의 향기성분 특성을 비교하였다. SDE, 용매추출 및 SPME법으로 확인된 휘발성 향기성분은 각각 총 66, 32 및 54종이었으며, 주요 휘발성 향기성분으로는 (E,E)-$\alpha$-farnesene, butanol, hexanol, 2-methyl butanol, hexyl hexanoate, hexyl 2-methyl butanoate, hexyl butanoate 등으로 사과의 특징적인 향기성분을 확인하였다. SDE법과 용매추출법에 의해 추출된 향기성분의 주요 화합물은 alcohol류와 hydrocarbon 류로 나타났고, SPME법에 의해 추출된 향기성분의 주요 화합물은 ester류와 hydrocarbon류로 상이하게 나타났다. 각 방법에 따라 추출된 휘발성 향기성분의 함량은 21.78, 7.48 및 11.67 mg/kg으로 SDE법에 의해 가장 많은 향기성분이 추출되었으나 신선한 사과의 향기특성을 살리기 위해서는 SPME방법과 동일한 향기조성을 나타낼 수 있는 추출방법이 필요할 것으로 생각된다.

Keywords

References

  1. Korea Institute of Science and Technology Information. 2006. 향료산업에 새바람을 일으키는 유전자 기술. Techno Leaders' Digest 115: 5-6
  2. Korea Customs Service. 2008. Trade statistical data. Available from http://www.customs.go.kr
  3. Cha YJ, Cho WJ, Jeong EJ. 2006. Comparison of volatile flavor compounds in commercial crab-like flavorants by analyzing methods. J Life Sci 16: 1243-1249 https://doi.org/10.5352/JLS.2006.16.7.1243
  4. Lee SA, Park HW, Kim SH, Park JD, Kim YH. 2007. Hot water treatment and modified atmosphere packaging affect the freshness extension of 'Fuji' apples. Korean J Food Preserv 14: 42-46
  5. Power FB, Chestnut VK. 1920. The odourous constituents of apples. Emanation of acetaldehyde from the ripe fruit. J Am Chem Soc 42: 1509-1526 https://doi.org/10.1021/ja01452a029
  6. Flath RA, Black DR, Guadagni DG, Mcfadden WH, Schultz TH. 1967. Identification of organoleptic evaluation of compounds in delicious apple essence. J Agric Food Chem 15: 29-35 https://doi.org/10.1021/jf60149a032
  7. Dixon J, Hewett EW. 2000. Factors affecting apple aroma/flavour volatile concentration: A review. NZ J Crop Hortic Sci 28: 155-173 https://doi.org/10.1080/01140671.2000.9514136
  8. Duerr P. 1979. Development of an odour profile to describe apple juice essences. Lebensm Wiss Technol 12: 23-26
  9. Cunningham DG, Acree TE, Barnard N, Butts RM, Braell PA. 1986. Charm analysis of apple volatiles. Food Chem 19: 137-147 https://doi.org/10.1016/0308-8146(86)90107-X
  10. Lee HJ, Park ER, Kim KS. 2000. Volatile flavor components in various varieties of apple (Malus pumila M.). J Korean Soc Food Sci Nutr 29: 597-605
  11. Reineccius GA. 2007. Flavour-isolation techniques. In Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability. Berger RG, ed. Springer-Verlag, Heidelberg. p 409-414
  12. Yun KS, Hong JH, Choi YH. 2006. Characteristics of Elsholtzia splendens extracts on simultaneous steam distillation extraction conditions. Korean J Food Preserv 13: 623-628
  13. Lee JG, Jang HJ, Kwag JJ, Lee DW. 2000. Comparison of the volatile components of Korean ginger (Zingiber officinale Roscoe) by different extraction methods. Korean J Food Nutr 13: 66-70
  14. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR. 1992. Automation and optimization of solid-phase microextraction. Anal Chem 64: 1960-1966 https://doi.org/10.1021/ac00041a034
  15. Louch D, Motlagh S, Pawliszyn J. 1992. Liquid-coated fused silica fibers. Anal Chem 64: 1187-1199 https://doi.org/10.1021/ac00034a020
  16. Schultz TH, Flath RA, Mon TR, Eggling SB, Teranishi R. 1977. Isolation of volatile components from a model system. J Agric Food Chem 25: 446-449 https://doi.org/10.1021/jf60211a038
  17. Robert PA. 1995. Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, IL, USA
  18. Stehagen E, Abbrahansom S, Mclafferty FW. 1974. The Wiley/NBS Registry of Mass Spectral Data. John Wiley and Sons, NY, USA
  19. Davies NW. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J Chromatogr 503: 1-24 https://doi.org/10.1016/S0021-9673(01)81487-4
  20. Sadtler Research Laboratories. 1986. The Sadtler standard gas chromatography retention index library. Sadtler, Philadelphia, PA, USA
  21. Komthong P, Hayakawa S, Katoh T, Igura N, Shimoda M. 2006. Determination of potent odorants in apple by headspace gas dilution analysis. Lebensm Wiss Technol 39: 472-478 https://doi.org/10.1016/j.lwt.2005.03.003
  22. Paillard NMM. 1990. The flavour of apples, pears and quinces. In Food Flavours. Part C. The Flavour of Fruits. Morton ID, Macleod AJ, eds. Elsevier, Amsterdam, Netherlands. p 1-13
  23. Bult JHF, Schifferstein HNJ, Roozen JP, Boronat ED, Voragen AGJ, Kroeze JHA. 2002. Sensory evaluation of character impact components in an apple model mixture. Chem Sense 27: 485-494 https://doi.org/10.1093/chemse/27.6.485
  24. Schumacher K, Asche S, Heil M, Mittelstadt F, Dietrich H, Mosandl A. 1998. Methyl-branched flavor compounds in fresh and processed apples. J Agric Food Chem 46: 4496-4500 https://doi.org/10.1021/jf980574b
  25. Kuhne J, Hener U, Jung J, Munch A, Dietrich H, Patz CD, Mosandl A. 2007. Zur Qualitatsbewertung von Apfelsaft: 3-Methylbutanol, 2-methylbutanol und ethanol und Kenngroben. Dtsch Lebensmitt Rundsch 103: 247-255
  26. Murray KE, Huelin FE. 1964. Occurrence of farnesene in the natural coating of apples. Nature 204: 80 https://doi.org/10.1038/204080a0
  27. Huelin FE, Murray KE. 1966. ${\alpha}$-Farnesene in the natural coating of apples. Nature 210: 1260-1261 https://doi.org/10.1038/2101260a0
  28. sobotnik J, Hanus R, Kalinova B, Piskorski R, Cvacka J, Bourguignon T, Roisin Y. 2008. (E,E)-a-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. J Chem Ecol 34: 478-486 https://doi.org/10.1007/s10886-008-9450-2
  29. Hern A, Dorn S. 1999. Sexual dimorphism in the olfactory orientation of adult Cydia pomonella in response to alphafarnesene. Entomol Exp Appl 92: 63-72 https://doi.org/10.1046/j.1570-7458.1999.00525.x
  30. Olias JM, Perez AG, Rios JJ, Sanz LC. 1993. Aroma of virgin olive oil biogenesis of the "green" odor notes. J Agric Food Chem 41: 2368-2373 https://doi.org/10.1021/jf00036a029

Cited by

  1. 사과박 첨가가 쿠키 품질 특성에 미치는 영향 vol.22, pp.8, 2016, https://doi.org/10.20878/cshr.2016.22.8.008