DOI QR코드

DOI QR Code

Regrinding Effect of Flat End-Mill Tool for Recycling of Tungsten Carbide (WC-Co) Material

초경소재 재활용을 위한 플랫 엔드밀공구의 재연삭 효과

  • Kang, Myung-Chang (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Kim, Min-Wook (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Kwon, Dong-Hee (School of Mechanical Engineering, Pusan National University) ;
  • Park, In-Duck (Industry & Technology Division, Busan Metropolitan City Hall) ;
  • Jeong, Young-Keun (National Core Research Center for Hybrid Materials Solution, Pusan National University)
  • 강명창 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 김민욱 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터) ;
  • 권동희 (부산대학교 기계공학부) ;
  • 박인덕 (부산시청 기간산업과) ;
  • 정영근 (부산대학교 하이브리드소재 솔루션 국가핵심연구센터)
  • Published : 2008.12.27

Abstract

In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.

Keywords

References

  1. D. H. Kwon, M. C. Kang, J. S. Kim, J. T. Ok and K. H. Kim, Surf. Coat. Technol., 200, 1933 (2005) https://doi.org/10.1016/j.surfcoat.2005.08.121
  2. J. Tlusty and S. Smith, J. of Manuf. S. Eng. ASME, 119, 664 (1997) https://doi.org/10.1115/1.2836806
  3. W. Y. Bao and I. N. Tansel, Int. J. Mach. Tools Manuf., 40, 2155 (2002) https://doi.org/10.1016/S0890-6955(00)00054-7
  4. J. S. Kim, G. J. Kim, M. C. Kang, J. W. Kim and K. H. Kim , Surf. Coat. Technol., 193, 249 (2005) https://doi.org/10.1016/j.surfcoat.2004.07.019
  5. M. C. Kang, J. S. Kim and K. H. Kim, Surf. Coat. Technol., 200, 1939 (2005) https://doi.org/10.1016/j.surfcoat.2005.08.119
  6. N. Cook, J. of Eng. Ind. Trans. ASME, 95, 931(1995)
  7. G. H. Ha, S. H. Hong and B. K. Kim, J. Korea Powder Metall. Inst., 6, 365-373 (2003)
  8. M. Nouari and A. Ginting, Surf. Coat. Technol., 200, 5663 (2006) https://doi.org/10.1016/j.surfcoat.2005.07.063
  9. S. PalDey and S. C. Dee vi, Mater. Sci. Eng., A, 342, 58 (2003) https://doi.org/10.1016/S0921-5093(02)00259-9
  10. D. K. Ahn, H. C. Kim and S. H. Lee, J. Mech. Sci. Technol., 19, 144 (2005) https://doi.org/10.1007/BF02916113
  11. V. Belido-Gonzalez, N. Stefanopoulos and F. Deguilhen, Surf. Coat. Technol., 74-75, 884(1995) https://doi.org/10.1016/0257-8972(95)08315-4
  12. G. E. D'Errico, E. Guglielmi and G. Rutelli, J. Vac. Sci. Technol, A21(4), 251 (1999)
  13. T. Moriwaki, CIRP, 41, 637 (1992) https://doi.org/10.1016/S0007-8506(07)63250-8