DOI QR코드

DOI QR Code

Preparation of Ni-GDC Powders by the Solution Reduction Method Using Hydrazine and Its Electrical Properties

하이드라진을 이용한 용액환원법에 의한 Ni-GDC 미분말 합성과 전기적 특성

  • Kim, Sun-Jung (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Kang-Min (Department of Materials Science and Engineering, Korea University) ;
  • Cho, Pyeong-Seok (Department of Materials Science and Engineering, Korea University) ;
  • Cho, Yoon-Ho (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Choong-Yong (Department of Materials Science and Engineering, Korea University) ;
  • Park, Seung-Young (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Yun-Chan (Department of Chemical Engineering, Konkuk University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • 김선중 (고려대학교 신소재공학부) ;
  • 김강민 (고려대학교 신소재공학부) ;
  • 조평석 (고려대학교 신소재공학부) ;
  • 조윤호 (고려대학교 신소재공학부) ;
  • 이충용 (고려대학교 신소재공학부) ;
  • 박승영 (고려대학교 신소재공학부) ;
  • 강윤찬 (건국대학교 화학공학과) ;
  • 이종흔 (고려대학교 신소재공학부)
  • Published : 2008.12.27

Abstract

Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at $1400^{\circ}C$ for 2 h and then reduced at $800^{\circ}C$ for 24 h in 3% $H_2$. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.

Keywords

References

  1. E. P. Murray, T. Tsai, and S.A. Barnett, Nature, 400, 649 (1999) https://doi.org/10.1038/21781
  2. N. P. Brandon, S. Skinner, and B. C. H. Steele, Annu. Rev. Mater. Res., 33, 183 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.094122
  3. Y. -H. Huang, R. I. Dass, Z. -L. Xing, and J. B. Goodenough, Science, 312, 254 (2006) https://doi.org/10.1126/science.1125877
  4. R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, Adv. Mater., 12(19) 1465 (2000) https://doi.org/10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9
  5. B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001) https://doi.org/10.1038/35104620
  6. S. P. Jiang and S. H. Chan, J. Mater. Sci., 39, 4405 (2004) https://doi.org/10.1023/B:JMSC.0000034135.52164.6b
  7. T. Setoguchi, K. Okamoto, K. Eguchi and H. Arai, J. Electrochem. Soc., 139(10), 2875 (1992) https://doi.org/10.1149/1.2068998
  8. H. Koide, Y. Someya, T. Yoshida, T. Maruyama, Solid State Ionics, 132, 253 (2000) https://doi.org/10.1016/S0167-2738(00)00652-4
  9. J. -H. Lee, H. Moon, H. -W. Lee, J. Kim, J. -D. Kim, K. -H. Yoon, Solid State Ionics, 148, 15 (2002) https://doi.org/10.1016/S0167-2738(02)00050-4
  10. W. Z. Zhu, S. C. Deevi, Mater. Sci. Eng. A, 362, 228 (2003) https://doi.org/10.1016/S0921-5093(03)00620-8
  11. A. Muramatsu and T. Sugimoto, J. Colloid Interface Sci., 189, 167 (1997) https://doi.org/10.1006/jcis.1997.4806
  12. T. Sugimoto, X. Zhou, and A. Muramatsu, J. Colloid Interface Sci., 259, 43 (2003) https://doi.org/10.1016/S0021-9797(03)00036-5
  13. J. -Y. Choi,, Y. -K. Lee, S. -M. Yoon, H. C. Lee, B. -K. Kim, J. M. Kim, K. -M. Kim, and J. -H. Lee, J. Am. Ceram. Soc., 88, 3020 (2005) https://doi.org/10.1111/j.1551-2916.2005.00582.x
  14. M. Marinsek, K. Zupan, and J. Macek, J. Power Source, 86, 383 (2000) https://doi.org/10.1016/S0378-7753(99)00425-5
  15. S. K. Pratihar, A. D. Sharma, R. N. Basu, and H. S. Maiti, J. Power Source, 129, 138 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.023
  16. F. Tietz, F. J. Dias, D. Simwonis, and D. Stöver, J. Euro. Ceram. Soc., 20, 1023 (2000) https://doi.org/10.1016/S0955-2219(99)00271-X