DOI QR코드

DOI QR Code

Deposition of Poly(3-hexylthiophene)(P3HT) by Vapor Deposition and Patterning Using Self-Assembled Monolayers

Oxide 표면에 Self-Assembly Monolayers를 이용한 전도성 고분자 Poly(3-hexylthiophene)(P3HT) 증착 및 Patterning 연구

  • Pang, Il-Sun (School of Advanced Materials Engineering, Kookmin University) ;
  • Kim, Hyun-Ho (School of Advanced Materials Engineering, Kookmin University) ;
  • Kim, Sung-Soo (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-Gab (School of Advanced Materials Engineering, Kookmin University)
  • 팽일선 (국민대학교 공과대학 신소재공학부) ;
  • 김현호 (국민대학교 공과대학 신소재공학부) ;
  • 김성수 (국민대학교 공과대학 신소재공학부) ;
  • 이재갑 (국민대학교 공과대학 신소재공학부)
  • Published : 2008.12.27

Abstract

Vapor phase polymerization of a conductive polymer on a $SiO_2$ surface can offer an easy and convenient means to depositing pure and conductive polymer thin films. However, the vapor phase deposition is generally associated with very poor adhesion as well as difficulty when patterning the polymer thin film onto an oxide dielectric substrate. For a significant improvement of the patternability and adhesion of Poly(3-hexylthiophene) (P3HT) thin film to a $SiO_2$ surface, the substrate was pre-patterned with n-octadecyltrichlorosilane (OTS) molecules using a ${\mu}$-contact printing method. The negative patterns were then backfilled with each of three amino-functionalized silane self-assembled monolayers (SAMs) of (3-aminopropyl) trimethoxysilane (APS), N-(2-aminoethyl)-aminopropyltrimethoxysilane (EDA), and (3- trimethoxysilylpropyl)diethylenetriamine (DET). The quality and electrical properties of the patterned P3HT thin films were investigated with optical and atomic force microscopy and a four-point probe. The results exhibited excellent selective deposition and significantly improved adhesion of P3HT films to a $SiO_2$ surface. In addition, the conductivity of polymeric thin films was relatively high (${\sim}13.51\;S/cm$).

Keywords

References

  1. S. Jenekhe, Chem. Mater., 16, 4381 (2004) https://doi.org/10.1021/cm041000r
  2. J. Roncali, Chem. Rev., 92, 711, (1992) https://doi.org/10.1021/cr00012a009
  3. F. Garnier, X. Peng, G. Horowitz and D. Fichou, Adv. Mater., 2, 592 (1990) https://doi.org/10.1002/adma.19900021207
  4. B. W. Jensen and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 90, 123(2006) https://doi.org/10.1016/j.solmat.2005.02.004
  5. M. J. Panzer, C. D. Frisbie, Adv. Funct. Mater., 16, 1051(2006) https://doi.org/10.1002/adfm.200600111
  6. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz and J. Rogers, Appl. Phys. Lett., 73, 142 (1998) https://doi.org/10.1063/1.121736
  7. M. M. Ling, Z. Bao, Chem. Mater., 16, 4824 (2004) https://doi.org/10.1021/cm0496117
  8. Z. Wang, J. Zhang, R. Xing, J. Yuan, D. Yan, Y. Han, J. Am. Chem. Soc., 125, 15278 (2003) https://doi.org/10.1021/ja036581k
  9. Z. Wei, C. Wang, Z. Wang, D. Liu, C. Bai, Surf. Interface Anal., 32, 275 (2001) https://doi.org/10.1002/sia.1053
  10. S. Kim, I. Pang and J. G. Lee, Macromol. Rapid Commun., 25, 1574 (2007) https://doi.org/10.1002/marc.200700272
  11. B. K. Kuila, A. K. Nandi, J. Phys. Chem. B, 110, 1621 (2006) https://doi.org/10.1021/jp055234p
  12. R. K. Singha, J. Kumara, R. Singha, R. Kantb, S. Chanda and V. Kumara, Mater. Chem. Phys., 104, 390 (2007) https://doi.org/10.1016/j.matchemphys.2007.01.024

Cited by

  1. SERS Immunoassay Using Microcontact Printing for Application of Sensitive Biosensors vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4281