DOI QR코드

DOI QR Code

Glucose Oxidase-Coated ZnO Nanowires for Glucose Sensor Applications

  • Noh, Kyung-Min (Department of Materials Science and Engineering, Korea University) ;
  • Sung, Yun-Mo (Department of Materials Science and Engineering, Korea University)
  • Published : 2008.12.27

Abstract

Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.

Keywords

References

  1. C. M. Li and C. S. Cha, Front. Biosci., 9, 3324 (2004) https://doi.org/10.2741/1483
  2. Y. M. Sung, Electrochem. Solid-State Lett., 8, 24 (2005) https://doi.org/10.1149/1.1850398
  3. A. K. Wanekaya, W. Chen, N. V. Myung and A. Mulchandani, Electroanalysis, 18(6), 533 (2006) https://doi.org/10.1002/elan.200503449
  4. R. A. Wolthuis, D. McCrae, J. C. Hartl, E. Saaski, G. L. Mitchell, K. Garcin and R. Willard, IEEE Trans. Biomed. Eng., 39(2), 185 (1992) https://doi.org/10.1109/10.121650
  5. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas and C. B. Ojeda, Sensors, 7(6), 797 (2007) https://doi.org/10.3390/s7060797
  6. K. E. Sapsford, T. Pons, I. L. Medintz and H. Mattoussi, Sensors, 6(8), 925 (2006) https://doi.org/10.3390/s6080925
  7. J. F. Sierra, J. Galban, S. de Marcos and J. R. Castillo, Anal. Chim. Acta, 368, 97 (1998) https://doi.org/10.1016/S0003-2670(98)00197-4
  8. J. F. Sierra, J. Galbán and J. R. Castillo, Anal. Chem., 69, 1471 (1997) https://doi.org/10.1021/ac9611327
  9. E. Topoglidis, A. E. G. Cass, B. O'Regan and J. R. Durrant, J. Electroanal. Chem., 517, 20 (2001) https://doi.org/10.1016/S0022-0728(01)00673-8
  10. Y. H. Yang, H. F. Yang, M. H. Yang, Y. L. Liu, G. L. Shen and R. Q. Yu, Anal. Chim. Acta, 525, 213 (2004) https://doi.org/10.1016/j.aca.2004.07.071
  11. E. Topoglidis, E. Palomares, Y. Astuti, A. Green, C. J. Campbell and J. R. Durrant, Electroanalysis, 17, 1035 (2005) https://doi.org/10.1002/elan.200403211
  12. J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li and Z. L. Dong, Appl. Phys. Lett., 88, 233106 (2006) https://doi.org/10.1063/1.2210078
  13. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong and W. Huang, Appl. Phys. Lett., 89, 123902 (2006) https://doi.org/10.1063/1.2356307
  14. Z. L. Wang, J. Phys.: Condens. Matter., 16, R829 (2004) https://doi.org/10.1088/0953-8984/16/25/R01
  15. W. Trettnak, M. J. P. Leiner and O. S. Wolfbeis, Analyst, 113(10), 1519 (1988) https://doi.org/10.1039/an9881301519
  16. J. F. Sierra, J. Galbán, S. de Marcos and J. R. Castillo, Anal. Chim. Acta, 414, 33 (2000) https://doi.org/10.1016/S0003-2670(00)00831-X
  17. A. Haouz, C. Twist, C. Zentz, P. Tauc and B. Alpert, Eur. Biophys. J., 27(1), 19 (1998) https://doi.org/10.1007/s002490050106