DOI QR코드

DOI QR Code

Construction and Measurement of Normal Spectral Emissivity Device using Fourier Transform Infrared Spectrometer

퓨리에 변환 적외선 분광기를 이용한 수직 분광 복사율 측정 장치의 제작과 측정

  • Jeon, Sang-Ho (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Yoo, Nam-Joon (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Jo, Jae-Heung (Dept. of Applied Optics and Electromagnetics, Hannam University) ;
  • Park, Chul-Woung (Heat and Light Center, Korea Research Institute of Standards and Science) ;
  • Park, Seung-Nam (Heat and Light Center, Korea Research Institute of Standards and Science) ;
  • Lee, Geun-Woo (Heat and Light Center, Korea Research Institute of Standards and Science)
  • 전상호 (한남대학교 이과대학 광.전자물리학과) ;
  • 유남준 (한남대학교 이과대학 광.전자물리학과) ;
  • 조재흥 (한남대학교 이과대학 광.전자물리학과) ;
  • 박철웅 (한국표준과학연구원 온도광도센터) ;
  • 박승남 (한국표준과학연구원 온도광도센터) ;
  • 이근우 (한국표준과학연구원 온도광도센터)
  • Published : 2008.12.31

Abstract

An Instrument to measure normal spectral emissivity is built using a Fourier Transform-Infrared (FT-IR) spectrometer. The instrument is composed of four main parts, reference blackbody, sample furnace, optics system, and FT-IR spectrometer. Measurement ranges of temperature and wavelength are $200^{\circ}C{\sim}500^{\circ}C$ and $3.5{\mu}m{\sim}20{\mu}m$, respectively. Measured emissivity of the reference blackbody is greater than 0.9993 with combined relative uncertainty less than 0.69%, which can be considered an ideal blackbody. We studied the emissivity of opaque alumina, graphite, anodized aluminum, and steel (IMS 200). It is shown that emissivity increases with the roughness of the steel (IMS 200) surface.

퓨리에 변환 적외선 분광기(FT-IR)를 이용한 물질의 적외선 분광 복사율 측정 장치를 구축하고 이 장치의 성능을 평가하였다. 본 장치는 기준 흑체, 시료 가열로, 광학계, FT-IR로 구성되어 있으며, 측정 온도 및 파장 영역은 $200^{\circ}C{\sim}500^{\circ}C$$3.5{\mu}m{\sim}20{\mu}m$ 이다. 기준 흑체의 유효 복사율은 0.9993 이상으로 거의 1에 가까운 값을 나타내고 있었으며, 흑체의 분광 복사율에 대한 합성 상대 불확도는 0.69% 이하이다. $300^{\circ}C$에서 불투명한 알루미나, 흑연, 양극 처리된 알루미늄 시료의 수직 분광 복사율과, 금속(IMS200)의 표면 거칠기에 따른 복사율을 측정하였다. 금속(IMS200)의 표면 거칠기에 따른 복사율 변화는 거칠기가 증가할수록 증가하였다.

Keywords

References

  1. Dipl.-Ing. Lila Raj Koirala, FTIR-Spectroscopic Measurement of Directional Spectral Emissivities of Microstructed Surfaces (Helmut-Schmidt University, Hamburg, 2004), Chapter 1, 7
  2. Laurent Ibos, Mario Marchetti, Abderrahim Boudenne, Stefan Datcu, Yves Candau, and Jean Live, “Infrared emissivity measurement device: Principle and Application,” Meas. Sci. Technol., vol. 17, no. 11, pp. 2950-2112, 2006 https://doi.org/10.1088/0957-0233/17/11/013
  3. Leire del Campo, Radul B. Perez-Saez, Xabier Esquisabel, Ignacio Fernandez, and Manuel J. Tello, “New experimental device for infrared spectral directional emissivity measurements in a controlled envirionment,” Rev. Sci. Instrum., vol. 77, no. 11, pp. 113111-113111-8, 2006 https://doi.org/10.1063/1.2393157
  4. Sonnik Clausen, “Spectral Emissivity of Surface Blackbody Calibrators,” Int. J. Thermophys, vol. 28, no. 6, pp. 2145-2154, 2007 https://doi.org/10.1007/s10765-007-0287-7
  5. Akiro Shimota, Hirokazu, and Shinji Kadokura, “Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator,” Appl. Opt., vol. 38, no. 3, pp. 571-576, 1999 https://doi.org/10.1364/AO.38.000571
  6. Henry E. Revercomb, H. Buijs, Hugh B. Howell, D. D. LaPorte, William L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt., vol. 27, no. 15, pp. 3210-3218, 1988 https://doi.org/10.1364/AO.27.003210
  7. Evangelos Theocharous, Juntaro Ishii, and Nigel P.Fox, “Absolute Linearity measurements on HgCdTe detectors in the infrared region,” Appl. Opt., vol. 43, no. 21, pp. 4182-4188, 2004 https://doi.org/10.1364/AO.43.004182
  8. Kola B. O., Mulwa B., and Mate P., “A transient technique for determination of thermophysical properties in an absorbtion calorimeter,” Meas. Sci. Technol., vol. 6, no. 7, pp. 888-892, 1995 https://doi.org/10.1088/0957-0233/6/7/005
  9. Siegel R. and Howell J. R, Thermal radiation heat transfer 2nd Edition (Mc Graw Hill, New Yock, 1981), pp. 107-151
  10. Stierwalt D. L., Bernstein J. B., and Kirk D. D. “Measurement of the infrared spectral absorptance of optical materials,” Appl. Opt., vol. 2, no. 11, pp. 1169-1173, 1963 https://doi.org/10.1364/AO.2.001169
  11. Raul B. Perez-Saez, Leire del Campo, and Manuel J. Tello, “Analysis of the Accuracy of methods for the Direct Measurement of Emissivity,” Int. J. Thermophys, vol. 29, no. 3, pp. 1141-1155, 2008 https://doi.org/10.1007/s10765-008-0402-4
  12. J. Ishii and A. Ono, “Uncertainty estimation for emissivity measurements near room temperature with a Fourier transform spectrometer,” Meas. Sci. Technol., vol. 12, no. 12, pp. 2103-2112, 2001 https://doi.org/10.1088/0957-0233/12/12/311
  13. Leonard Hanssen, Sergey Mekhontsev, and Vladimir Khromchenko, “Infrared Spectral Emissivity Characterization Facility at NIST,” Proc. SPIE, vol. 5405, no. 1, pp. 1-12, 2004 https://doi.org/10.1117/12.542224
  14. Howard W Yoon, David W Allen, and Robert D Saunders, “Methods to reduce the size-of source effect in radiometers,” Metrologia, vol. 42, no. 2, pp. 89-96, 2005 https://doi.org/10.1088/0026-1394/42/2/003
  15. Igor Pusnik, Goran Grgic, and Janko Drnovsek, “System for the determination of the size-of-source effect of radiation thermometers with the direct reading of temperature,” Meas. Sci. Technol., vol. 17, no. 6, pp. 1330-1336, 2006 https://doi.org/10.1088/0957-0233/17/6/007

Cited by

  1. IR radiometer sensitivity and accuracy improvement by eliminating spurious radiation for emissivity measurements on highly specular samples in the 2–25 μm spectral range vol.110, 2017, https://doi.org/10.1016/j.measurement.2017.06.010