DOI QR코드

DOI QR Code

복수 개의 광파장에 대한 상대적 흡광 특성을 이용한 글루코스 농도 측정

Prediction of the Glucose Concentration Based on Its Optical Absorbance at Multiple Discrete Wavelengths

  • Kim, Ki-Do (Department of Electronic Engineering, Kwangwoon University) ;
  • Son, Geun-Sik (Department of Electronic Engineering, Kwangwoon University) ;
  • Lim, Seong-Soo (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
  • 발행 : 2008.12.31

초록

본 논문에서는 복수 개의 측정 광파장 대역에서의 글루코스 수용액의 상대적인 흡광 특성을 이용한 글루코스 농도 예측 방법을 제안하고 검증하였다. 각 측정 파장에서의 상대적인 흡광도는 기준 파장에서의 흡광도를 기준하여 얻어진다. 선정된 기준 파장(1310 nm)과 네 개의 측정 파장(1064, 1550, 1685, 1798 nm) 대역에서는 글루코스에 대한 흡광도가 서로 반대의 부호를 갖도록 하였으며, 이 특성은 측정 정확도를 높이는데 도움이 된다. 최종적인 글루코스 수용액의 예측 농도는 각 측정 파장에서 얻어진 예측 값의 평균으로 결정된다. 5 mm의 광경로와 $0{\sim}1000mg/dL$ 농도 범위에서 실제로 측정된 글루코스의 흡광도를 살펴보면, 기준 파장 1310 nm에서는 $-1.42{\times}10^{-6}\;AU$/(mg/dL), 측정 파장 1685 nm에서는 $+8.12{\times}10^{-6}\;AU$/(mg/dL)로 최대였다. 그리고 제안된 방법을 이용하여 글루코스 용액의 농도를 예측할 경우 얻어진 표준예측오차(SEP: standard error of prediction)는 ${\sim}28\;mg/dL$였다. 또한, 온도와 지방층이 글루코스 농도 측정에 미치는 영향을 조사하였다. 먼저 $26{\sim}40^{\circ}C$ 온도 범위에서 측정된 흡수량 변화율은 기준 파장 1310 nm에서 $-9.1{\times}10^{-5}\;AU/^{\circ}C$였고, 측정 파장 1550 nm에서 $-2.08{\times}10^{-2}\;AU/^{\circ}C$였다. 그리고 글루코스 수용액에 존재하는 지방층 두께에 따른 흡수량 변화율은 1685 nm 파장 대역에서 +1.093 AU/mm로 측정되었다.

A scheme for predicting the concentration of a glucose solution based on its relative optical absorbance at multiple probe wavelengths was proposed and verified. The relative absorbance at each of the probe wavelength was obtained with respect to the absorbance at a reference wavelength. The single reference wavelength (1310 nm) and a group of four different probe wavelengths (1064, 1550, 1685, 1798 nm) were selected to exhibit the glucose absorbance with opposite signs, thereby enhancing the accuracy of the prediction. The final glucose concentration was estimated by taking the average of the predicted values provided by the four probe wavelengths. The absorbance of the glucose solution for the path length of 5 mm was $-1.42{\times}10^{-6}\;AU$/(mg/dL) at the reference wavelength of 1310 nm and peaked at $+8.12{\times}10^{-6}\;AU$/(mg/dL) at 1685 nm. The concentration of the glucose solution was decently predicted by means of the proposed scheme with the standard error of prediction of ${\sim}28\;mg/dL$. In addition, the influence of the ambient temperature and the fat thickness upon the prediction of the glucose concentration was examined. The absorption change with the temperature was $-9.1{\times}10^{-5}\;AU/^{\circ}C$ in the temperature range of $26{\sim}40^{\circ}C$ at the reference wavelength, and $-2.08{\times}10^{-2}\;AU/^{\circ}C$ at 1550 nm. And the absorption change with respect to the fat thickness was +1.093 AU/mm at the probe wavelength of 1685 nm.

키워드

참고문헌

  1. S. M. Benjamin, D. B. Rolka, R. Valdez, K. M. Venkat Narayan, and L. S. Geiss, “Estimated number of adults with prediabetes in the U. S. in 2000,” Diabetes Care, vol. 27, no. 3, pp. 645-649, 2003 https://doi.org/10.2337/diacare.26.3.645
  2. Y. J. Kim, G. W. Yoon, and K. J. Jeon, “Influence of other blood components in predicting glucose concentration using design of experiment,” J. Biomed. Eng. Res., vol. 22, no. 6, pp. 497-502, 2001
  3. T. C. Dunn, R. C. Eastman, and J. A. Tamada, “Rates of glucose change measured by blood glucose meter and the GlucoWatch Biographer during day, night, and around mealtimes,” Diabetes Care, vol. 27, no. 9, pp. 2161-2165, 2004 https://doi.org/10.2337/diacare.27.9.2161
  4. M. J. McShane, R. J. Russell, M. V. Pishko, and G. L. Cote, “Glucose monitoring using implanted fluorescent microspheres,” IEEE Eng. Med. Biol. Mag., vol. 19, issue 6, pp. 36-45, 2000 https://doi.org/10.1109/51.887244
  5. K. J. Jeon, I. D. Hwang, S. J. Hahn, and G. W. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt., vol. 11, issue 1, pp. 014022-1-014022-7, 2006 https://doi.org/10.1117/1.2165572
  6. Y. Mendelson, A. C. Clermont, R. A. Peura, and B. Lin, “Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy,” IEEE Trans. Biomed. Eng., vol. 37, no. 5, pp. 458-465, 1990 https://doi.org/10.1109/10.55636
  7. J. W. Y. Chung, K. L. Fan, T. K. S. Wong, S. C. H. Lam, C. C. Cheung, C. M. Chan, and Y. K. Lau, “Method for predicting the blood glucose level of a person,” US Patent, US20060253008 A1
  8. S. J. Hahn, G. W. Yoon, G. Kim, and S. H. Park, “Reagentless determination of human serum components using infrared absorption spectroscopy,” J. Opt. Soc. Korea, vol. 7, no. 4, pp. 240-244, 2003 https://doi.org/10.3807/JOSK.2003.7.4.240
  9. H. J. Kim, Y. A. Woo, S. H. Chang, C. H. Cho, K. Cantrell, and E. H. Piepmeier, “Fundamental investigation of noninvasive determination of glucose by near infrared spectrophotometry,” Analytical Science & Technology, vol. 11, no. 1, pp. 47-53, 1998
  10. I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care, vol. 22, no. 12, pp. 2026-2032, 1999 https://doi.org/10.2337/diacare.22.12.2026
  11. V. Saptari and K. Youcef-Toumi, “Design of a mechanicaltunable filter spectrometer for noninvasive glucose measurement,” Appl. Opt., vol. 43, no. 13, pp. 2680-2688, 2004 https://doi.org/10.1364/AO.43.002680
  12. H. Cui, L. An, W. Chen, and K. Xu, “Quantitative effect of temperature to the absorbance of aqueous glucose in wavelength range from 1200 nm to 1700 nm,” Opt. Exp., vol. 13, no. 18, pp. 6887-6891, 2005 https://doi.org/10.1364/OPEX.13.006887