DOI QR코드

DOI QR Code

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites

샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구

  • 고희영 (한밭대학교 기계설계공학과, 경량구조 및 CAE 실험실) ;
  • 신광복 (한밭대학교 기계설계공학부) ;
  • 조세현 (한국화이바(주) 차량사업부) ;
  • 김대환 (한국화이바(주) 차량사업부)
  • Published : 2008.10.31

Abstract

This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.

본 논문은 샌드위치 복합재가 적용된 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 안전성 결과에 대해 서술하고 있다. 차체 구조물에 적용된 샌드위치 복합재는 알루미늄 하니컴 심재와 WR580/NF4000 유리섬유/에폭시 적층 복합재 면재로 이루어져 있다. 차체 구조물에 적용되는 적층 복합재 면재에 대해 기계적 시험을 통하여 물성을 획득하였고, 직교 이방성 특성을 갖는 하니컴 심재의 물성은 유효등가손상모델을 적용하였다. ANSYS v11.0을 이용한 유한요소 해석은 JIS E 1105 기준과 ASCE 21-98 기준에 따라서 자동무인경전철 차체의 구조 안전성을 평가하였다. 충돌해석은 외연유한요소 해석 프로그램인 LS-DYNA3D를 이용하였다. 충돌 조건은 강체벽에 10km/h의 속도로 정면충돌 사고를 모사하였다. 또한, 수성된 Chang-Chang 파손기준시은 충돌 후 복합재 구조물의 파손 모드를 평가하는데 추천된다.

Keywords

References

  1. Hiroyuki, M., Masahisa, M., Yasuyuki, S., Makoto, K., Shinichi, S., Hiroyuki, K. (Jun. 2003), 'Automate People Mover System 'Crystal Mover' for Singapore's LTA,' Mitsubishi Heavy Industries Ltd. Technical Review, Vol. 40, No. 3
  2. Technology Development Project of Light Railway Transit System (2000), 'A Carbody Concept and Structural Analysis of Light Railway Transit,' Research Reports, Korea Railroad Research Institute
  3. J. R. Vinson (1999), 'The Behavior of Sandwich Structures of Isotropic and Composite Materials', pp. 11-22
  4. Choi, H. Y.,Chang, F. K. (1992), 'A Model for Predicting Damage in Graphite Epoxy Laminated Composite Resulting from Low Velocity Point Impact,' Journal of Composite Material, Vol. 26, pp. 2134-2169 https://doi.org/10.1177/002199839202601408
  5. Lee, J. Y., Shin, K. B., Jeong, J. C., (2007), 'Simulation of Low Velosity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application,' Korean Society for Composite Materials, Vol. 20, No. 4, pp.42-50
  6. S. W. Tsai and E. M. Wu, (1971), 'A General Theory of Strength for Anisotropic Materials,' Journal of Composite Material, Vol. 5, pp. 58-80 https://doi.org/10.1177/002199837100500106
  7. Azzi, V. D., Tsai, S. W. (1965), 'Anisotropic Strength of Composites,' Experimental Mechanics, Vol. 5, pp. 283-288 https://doi.org/10.1007/BF02326292
  8. Matzenmiller, A., Luvliner, J., Taylor, R. L. (1995), 'A Constitutive Model for Anisotropic Damage in Fiber-Composite,' Journal of Mechanical of Materials, Vol. 21, pp. 125-152
  9. LS-DYNA(2006), 'Keyword User's Manual, Version 971,' Livermore Software Technology Corporation
  10. Japanese Industrial Standard (JIS) E 7105 (1994), Test Method for Static Load of Body Structures of Railway Rolling Stock
  11. American Society of Civil Engineers (ASCE) Standard No. 21-98 (1999), Automated People Mover Standards- Part 2