DOI QR코드

DOI QR Code

Removal of endocrine disruptive compounds using dimensionally stable anode (DSA)

불용성 전극(DSA)을 이용한 내분비계 장애물질 제거

  • 김동욱 (공주대학교 환경공학과)
  • Published : 2008.10.31

Abstract

An electrochemical reactor was designed and operated to treat the solution containing endocrine disruptive compounds such as phenol and bisphenol A. An experiment involving the electrochemical oxidation of bisphenol A was performed with the use of a dimensionally stable anode (DSA). The apparent current, conductivity, and the gap between cathode and anode were selected as design parameters. The phenol removal rate increased with an increase in apparent current. The bisphenol A removal rate increased with an increase in apparent current efficiency. An increase in the conductivity also led to an increase in the rate of removal of bisphenol A. The gap between cathode and anode did not affect the bisphenol A removal rate or the cathodic current efficiency.

본 연구는 내분비계 장애물질로써 페놀 및 비스페놀A이 포함된 용액에 대해 전기분해 실험을 수행하였다. 불용성 DSA 양극을 사용하여 오염물질의 전기산화 변화를 확인하였으며 이때 운전인자는 전류밀도, 전도도, 극간거리 등을 변수로 하여 행하였다. 페놀 및 비스페놀A 제거율인 경우 전류밀도가 증가에 비례하여 오염물 제거가 향상되었으며 전도도가 높을수록 비스페놀A 처리율이 증가하였다. 반면 극간거리 변화에 따른 오염물질 제거에는 큰 영향을 보이지 않았다.

Keywords

References

  1. Menditto, A. and Turrio-Baldassarri, L. "Environmental and biological monitoring of endocrine disrupting chemicals", Chemosphere, 39, 1301-1307, (1999) https://doi.org/10.1016/S0045-6535(99)00198-8
  2. Hock, B. and Seifert, M. "The 5th European Workshop on Biosensors for Environmental Monitoring of Endocrine Disruptors", Weihstephan, Munich, (1997)
  3. Benfenati, E. Facchini, G. Pierucci, P. and Fanelli, R. "Identification of organic contaminants in leachates form industrial waste landfills", Trends in Anal. Chem, 15, 305-310, (1996)
  4. Oosterkamp, A. J. B. Hock, M. Seifert, and H. Irth. "Novel monitoring strategies for xenoestrogens", Trends in Analy, 19, 544-553, (1997)
  5. Krstajic, G. and Nakic, V. "Hypochlorite production : A model of the cathode reaction" J. appl. electrochem. 17, 77 (1987) https://doi.org/10.1007/BF01009133
  6. Comninellis, Ch. and Pulgarin, C. "Anodic oxidation of phenol or wastewater treatment" J. Apply Electrochemistry. 21, 703-708 (1991) https://doi.org/10.1007/BF01034049
  7. Gattrell, M. and Kirk, D. W. "The electrochemical oxidation of aqueous phenol at a glass carbon electrode" Can J. Chem Engn. 68, 997-1003 (1960)
  8. Stucki, S., Kotz, R., Carcer, B. and Suter, W. "Electrochemical wastewater treatment using high overvoltage anode, part II : anode perfermance and applications" J. apply electrochemistry. 21, 99-104 (1991) https://doi.org/10.1007/BF01464288
  9. Della, M. Agostzno, A. and Ceglie, A. " An electrochemical sewage treatment process" J. apply electrochemistry. 10, 527-533 (1980) https://doi.org/10.1007/BF00614086
  10. Paidar, M., Rousar, I., Bouzek, K. "Electrochemical removal of nitrate ions in waste solution after regeneration of ion exchange columns" J. Apply Electrochemistry. 29, 611-617 (1999) https://doi.org/10.1023/A:1026423218899
  11. Comninellis, Ch. and Pulgarin, C. " Anodic oxidation of phenol or wastewater treatment" J. Apply Electrochemistry. 21, 703-708 (1991) https://doi.org/10.1007/BF01034049
  12. Sudoh, M., Kodera, T, Sakai, K., Zhang, J. Q. and Koide, K. "Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent" J. Chem. Engng jap. 19, 513-518 (1996)
  13. Mikotaj, D., Wojciech, H. " Electro oxidation of ammonia and simple amine at titanium electrode modified with a mixture of Ru/Ti dioxides" Electroanalysis. 9, No.10 (1997)