Synthesis of β-Aryl Substituted N-Tosyl Aza-Baylis-Hillman Adducts: Heck Reaction of N-Tosyl Aza-Baylis-Hillman Adducts

Jeong Mi Kim, Sung Hwan Kim, Se Hee Kim, and Jae Nyoung Kim°

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea E-mail: kimjn@chonnam.ac.kr Received February 15, 2008

Key Words : Baylis-Hillman adducts, Heck reaction, Aza-Baylis-Hillman adducts

During the last two decades notable improvements in Baylis-Hillman chemistry have been achieved in view of the reaction rate and synthetic applications of Baylis-Hillman or *aza*-Baylis-Hillman adducts.¹ However, the general and efficient synthesis of β -branched *aza*-Baylis-Hillman adducts has remained unsolved. Although many approaches have been examined, most of the methods suffer from low yields and lack of generality.^{2,3} Thus, development of an efficient synthetic method of these compounds would be helpful in chemical transformations of Baylis-Hillman adducts.¹⁻⁴

The most simple and convenient method for the preparation of β -aryl-substituted Baylis-Hillman adducts could be the palladium-mediated Heck reaction with aryl halides. Actually intermolecular Heck type arylation of Baylis-

Hillman adducts has been examined by some research groups.⁵ However, the reaction gave benzyl-substituted β -keto ester (**A**) as the major product instead of β -aryl-substituted Baylis-Hillman type adduct (**B**) as shown in Scheme 1.⁵ The compound (**A**) was generated *via* the *sym*-elimination of H_aPdOAc from the intermediate (1) and the following keto-enol tautomerization.^{5c} This unfavorable result might be the principle reason for the lack of any trials on the synthesis of β -aryl *aza*-Baylis-Hillman adducts *via* the Heck type arylation strategy.

Three types of compounds including 3a, 4a and 5a could be produced from the Heck reaction of *N*-tosyl *aza*-Baylis-Hillman adduct 1a as in Scheme 2. However, we expected that the conformation of the intermediate (II. Scheme 2) might be differ with that of the corresponding intermediate

1584 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 8

of Baylis-Hillman alcohol (I, Scheme 1) due to the increased steric hindrance around H_a . Thus, we expected that the final *syn*-elimination of palladium could occur with H_b/H_c instead of H_a to produce desired **3a** as the major product. With the

expectation we examined the reaction of 1a and iodobenzene (2a). To our delight we obtained β -phenyl *N*-tosyl aza-Baylis-Hillman adduct 3a in good yield (67%) as E/Zmixture and we wish to report herein the results. To the best

Table 1. Optimization of reaction conditions for the synthesis of 3a

Entry	Conditions	Results (% Yield) ^o
1	Pd(OAc) ₂ (5 mol%), Et ₃ N (3.0 equiv), PPh ₃ (20 mol%), DMF, 90-100 °C, 5 h	3a (45), 1a (33)
2	Pd(OAc) ₂ (10 mol%), Et ₃ N (3.0 equiv), PPh ₃ (20 mol%), CH ₃ CN, reflux, 25 h	3a (50), 1a (20)
3	Pd(OAc) ₂ (10 mol%), n-Bu ₄ NBr (0.5 equiv), Et ₃ N (3.0 equiv), PPh ₃ (20 mol%), CH ₃ CN, reflux, 20 h	3a (60), 1a (15)
4	Pd(OAc) ₂ (5 mol%), n-Bu ₄ NBr (1.0 equiv), KOAc (2.0 equiv), PPh ₃ (10 mol%), CH ₃ CN, reflux, 18 h	3a (73), 1a (11)
5	Pd(OAc) ₂ (5 mol%), n-Bu4NBr (1.0 equiv), K ₂ CO ₃ (3.0 equiv), H ₂ O/DMF, 50-60 °C, 5 h	3a (0), 1a' (95)
6	Pd(OAc) ₂ (5 mol%), K ₂ CO ₃ (3.0 equiv), PPh ₃ (20 mol%), CH ₃ CN, reflux, 20 h	3 a (30), 1 a' (25)

^aThe yield of **3a** is a combined yield of E and Z isomers. In some cases **3a** was contaminated with small amount of **1a**.

Table 2. Synthesis of β -aryl aza-Baylis-Hillman adducts

^aConditions: step 1: compound 1 (1.0 mmol), compound 2 (2.0 mmol). Pd(OAc)₂ (5 mol^{\circ_{0}}). PPh₃ (10 mol^{\circ_{0}}). TBAB (1.0 mmol). KOAc (2.0 mmol). CH₃CN, reflux; step 2: K₂CO₃ (1.0 mmol), reflux.

Notes

of our knowledge this is the first successful results for the synthesis of β -aryl aza-Baylis-Hillman adduct via palladiummediated Heck reaction.⁵

The reactions of **1a** and **2a** under various Pd-mediated Heck reaction conditions were examined and the results are summarized in Table 1. In most cases (entries 1-4 and 6) we observed the formation of desired product **3a** in variable yields (30-73%) with some remaining starting material **1a**. When we used Et₃N the reaction was sluggish (entries 1-3). Among the conditions the use of Pd(OAc)₂/TBAB/KOAc/ PPh₃ in refluxing CH₃CN (entry 4) was found to be the best. It is interesting to note that rearranged tosylamide derivative **1a'** was obtained almost quantitatively when we used K₂CO₃ as a base (entry 5).^{6.7}

Initially, we isolated 3a-E (35%) and 3a-Z (38%) under the conditions of entry 4 in Table 1. However, unfortunately, 3a-Z was contaminated with small amount of starting material 1a, which could not be separated easily by column chromatography due to their similar mobility. Thus we used K_2CO_3 in order to convert remaining 1a into 1a' completely according to the results of entry 5 in Table 1. In this manner we obtained analytically pure 3a-E (36%) and 3a-Z (31%), which were identified by comparison with the reported data (vide infra, entry 1 in Table 2).²

Encouraged by the successful results, we prepared starting materials **1b-d** according to the reported methods,⁸ and synthesized analogous compounds **3b-f** similarly under the optimized conditions and the results are summarized in Table 2. 4-Iodotoluene (**2b**) and 2-iodotoluene (**2c**) showed similar reactivity (entries 2 and 3). Other *N*-tosyl- (**1b** and **1c**) and *N*-phenyl- (**1d**) derivatives also showed same reactivity (entries 4-6). In most cases except entry 3, we observed some remaining starting materials **1a-d** and we treated the reaction mixture with K₂CO₃ before separation (vide supra).

In summary, we prepared some β -aryl *N*-tosyl *aza*-Baylis-Hillman adducts *via* the Heck type reaction of *aza*-Baylis-Hillman adduct and aryl iodide under the influence of Pd(OAc)₂/TBAB/KOAc/PPh₃ in refluxing CH₃CN in moderate yield as E/Z mixture.

Experimental Section

Typical procedure for the synthesis of 3a: A mixture of 1a (345 mg. 1.0 mmol), 2a (408 mg. 2.0 mmol), Pd(OAc)₂ (11 mg, 0.05 mmol), *n*-Bu₄NBr (322 mg. 1.0 mmol), KOAc (196 mg. 2.0 mmol), PPh₃ (26 mg, 0.1 mmol) in CH₃CN (3 mL) was heated to reflux for 18 h. To the reaction mixture K_2CO_3 (138 mg. 1.0 mmol) was added and maintained refluxing for 8 h. After the usual aqueous workup and column chromatographic purification process (hexanes/CH₂Cl₂/ether, 5:1:2) we obtained 3a-Z (131 mg. 31%) and 3a-E (152 mg, 36%) as white solids. The selected spectroscopic data of prepared compounds 3a and 3f are as follows.

Compound **3a**-Z: 31%; white solid, mp 117-119 °C; IR (film) 3290, 2924, 1711, 1163 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.20 (s. 3H), 3.39 (s. 3H), 5.32 (d. J = 9.3 Hz, 1H).

5.99 (d, J = 9.3 Hz. 1H). 6.63 (s, 1H), 6.94-6.97 (m, 2H), 7.12 (d, J = 8.1 Hz, 2H), 7.21-7.33 (m, 8H), 7.72 (d, J = 8.1Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.24, 51.62, 61.52, 126.46, 127.20, 127.81, 127.94, 128.33, 128.55 (2C), 129.53, 130.18, 134.58, 137.74, 138.12, 138.22, 143.34, 168.22; ESIMS *m*²z 422 (M⁺+1). Anal Calcd for C₂₄H₂₃NO₄S: C, 68.39; H, 5.50; N, 3.32, Found: C, 68.58; H, 5.77; N, 3.23.

Compound **3a**-*E*: 36%; white solid, mp 153-155 °C: IR (film) 3292. 3061, 1718, 1161 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s. 3H), 3.66 (s. 3H). 5.85 (d, *J* = 10.5 Hz. 1H), 6.34 (d. *J* = 10.5 Hz. 1H). 7.09 (d, *J* = 8.4 Hz. 2H). 7.16-7.19 (m. 2H), 7.26-7.43 (m. 10H). 7.69 (s. 1H): ¹³C NMR (CDCl₃, 75 MHz) δ 21.46, 52.09, 53.94. 126.26. 127.02. 127.57, 128.57, 128.78. 128.94 (2C), 129.23, 129.56. 133.65, 137.68, 139.07, 142.75, 142.92. 166.89; ESIMS *m*:*z* 422 (M⁺+1). Anal Calcd for C₂₄H₂₃NO₄S: C. 68.39; H, 5.50; N, 3.32. Found: C. 68.64; H. 5.46: N, 3.15.

Compound **3b**-*Z*: 37%; white solid, mp 126-128 °C: IR (film) 3292. 2960. 2918, 1699 cm⁻¹: ¹H NMR (CDCl₃, 300 MHz) δ 2.21 (s. 3H), 2.33 (s. 3H), 3.41 (s. 3H). 5.29 (d. *J* = 9.3 Hz, 1H). 5.94 (d. *J* = 9.3 Hz. 1H), 6.57 (s. 1H), 6.86 (d. *J* = 8.4 Hz, 2H). 7.05-7.16 (m. 4H), 7.22-7.32 (m, 5H). 7.71 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃. 75 MHz) δ 21.26 (2C), 51.61, 61.70, 126.46. 127.21. 127.76, 128.47. 128.53, 128.67, 129.18. 129.52. 131.61, 137.79, 138.29. 138.44, 138.75, 143.29. 168.39; LCMS *m/z* 435 (M⁻).

Compound **3b**-*E*: 41%: white solid. mp 161-163 °C: IR (film) 3309. 2952. 2924, 1697 cm⁻¹: ¹H NMR (CDCl₃, 300 MHz) δ 2.38 (s. 3H), 2.39 (s. 3H), 3.64 (s. 3H). 5.88 (d. *J* = 10.5 Hz. 1H), 6.35 (d. *J* = 10.5 Hz. 1H), 7.06-7.10 (m. 4H), 7.17 (d. *J* = 8.1 Hz, 2H), 7.27-7.43 (m. 7H), 7.63 (s. 1H): ¹³C NMR (CDCl₃. 75 MHz) δ 21.40. 21.49. 52.02, 54.08. 126.34, 127.05. 127.55. 128.05, 128.57, 129.10. 129.19, 129.56, 130.84. 137.83. 139.17, 140.00, 142.89. 142.96, 167.03: LCMS *m/z* 435 (M⁻).

Compound **3c**-*Z*: 26%; white solid, mp 146-148 °C: IR (film) 3288, 2924, 1707cm^{-1, 1}H NMR (CDCl₃, 300 MHz) δ 2.21 (s. 3H), 2.29 (s. 3H), 3.30 (s. 3H), 5.37 (d, *J* = 9.3 Hz, 1H), 5.99 (d, *J* = 9.3 Hz, 1H), 6.56-6.59 (m. 1H), 6.86 (s. 1H), 7.00-7.05 (m. 1H), 7.12-7.22 (m. 4H), 7.23-7.34 (m. 5H), 7.75 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 19.84, 21.34, 51.51, 61.22, 125.13, 126.41, 127.17, 127.79 (2C), 128.38, 128.60, 129.62, 129.66, 131.23, 134.62, 135.67, 137.93, 138.50, 138.81, 143.39, 167.87; LCMS *m/z* 435 (M⁺).

Compound **3c**-*E*: 48%; white solid. mp 140-142 °C: IR (film) 3309, 2952, 1703 cm⁻¹; ¹H NMR (CDCl₃. 300 MHz) δ 2.17 (s, 3H), 2.35 (s, 3H). 3.70 (s, 3H). 5.69 (d. *J* = 10.2 Hz. 1H). 6.35 (d. *J* = 10.2 Hz. 1H), 7.05-7.12 (m. 4H). 7.21-7.29 (m. 7H), 7.42 (d. *J* = 8.4 Hz, 2H). 7.86 (s. 1H): ¹³C NMR (CDCl₃. 75 MHz) δ 19.86. 21.40. 52.17, 53.82. 126.13, 126.22. 126.92. 127.38, 127.75, 128.44. 129.30, 129.40, 129.95, 130.32, 132.90, 137.30, 137.69, 139.48, 141.59, 142.87, 167.00; LCMS *m/z* 435 (M⁻).

Compound **3d-***Z*: 32%; white solid. mp 88-90 °C; IR (film) 3292, 2918, 1699 cm⁻¹; ¹H NMR (CDCl₃. 300 MHz)

 δ 0.83 (t, J = 7.2 Hz, 3H), 2.21 (s. 3H), 3.81-3.93 (m. 2H), 5.31 (d, J = 9.3 Hz, 1H), 5.99 (d, J = 9.3 Hz, 1H), 6.62 (s. 1H), 6.95-6.98 (m, 2H), 7.13 (d, J = 8.1 Hz, 2H), 7.23-7.33 (m, 8H), 7.73 (d, J = 8.1 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.33, 21.26, 60.87, 61.64, 126.50, 127.22, 127.77, 127.84, 128.40, 128.45, 128.49, 129.53, 130.54, 134.69, 137.81, 138.02, 138.20, 143.33, 167.72.

Compound **3d**-*E*: 40%: white solid. mp 148-149 °C: IR (film) 3311. 2964. 1693, 1261 cm⁻¹; ¹H NMR (CDCl₃. 300 MHz) δ 1.19 (t. *J* = 7.2 Hz, 3H), 2.39 (s. 3H). 4.06-4.16 (m. 2H), 5.85 (d, *J* = 10.2 Hz. 1H), 6.37 (d. *J* = 10.2. 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.16-7.19 (m, 2H). 7.23-7.43 (m. 10H). 7.67 (s, 1H); ¹³C NMR (CDCl₃. 75 MHz) δ 14.02. 21.47. 53.99. 61.15. 126.27. 127.02. 127.52, 128.53. 128.77. 128.94. 129.19, 129.24. 129.50. 133.72, 137.75. 139.20. 142.48. 142.87, 166.43.

Compound **3e**-*Z*: 35%; white solid. mp 86-88 °C; IR (film) 3294. 2924. 1703 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.25 (s. 3H), 2.33 (s. 3H), 3.44 (s. 3H), 5.31 (d. *J* = 9.3 Hz, 1H), 5.88 (d. *J* = 9.3 Hz, 1H), 6.66 (s. 1H). 6.97-7.00 (m. 2H). 7.10-7.22 (m. 7H). 7.28-7.30 (m. 2H), 7.75 (d. *J* = 8.4 Hz. 2H): ¹³C NMR (CDCl₃. 75 MHz) δ 21.01, 21.27, 51.64. 61.36. 126.37. 127.25. 127.94. 128.35. 128.52. 129.28. 129.53. 130.32, 134.67. 135.15. 137.60, 137.79. 138.03. 143.32. 168.30.

Compound **3e**-*E*: 41%: white solid, mp 142-143 °C; IR (film) 3311, 2952, 1699 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.32 (s. 3H). 2.39 (s. 3H). 3.66 (s. 3H). 5.80 (d, *J* = 10.5 Hz, 1H), 6.31 (d, *J* = 10.5 Hz, 1H), 7.07-7.18 (m, 6H). 7.25 (d, *J* = 7.8 Hz, 2H), 7.32-7.42 (m, 5H). 7.66 (s, 1H): ¹³C NMR (CDCl₃, 75 MHz) δ 20.98, 21.48, 52.07, 53.77, 126.20, 127.05, 128.77, 128.97, 129.06, 129.21, 129.31, 129.53, 133.72, 136.07, 137.31, 137.74, 142.63, 142.88, 166.94.

Compound **3f**-Z: 27%; pale yellow oil: IR (film) 3402. 3026. 1712. 1601 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.53 (s. 3H), 4.27 (br s, 1H), 5.41 (s. 1H). 6.66-6.74 (m, 3H). 6.92 (s. 1H). 7.12-7.19 (m. 2H). 7.22-7.45 (m. 10H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.72, 61.66, 113.52. 118.03, 127.70. 127.99. 128.12. 128.15. 128.28. 128.82. 129.19. 133.85. 134.29. 135.48. 139.89. 146.62. 169.32; ESIMS *m*:*z* 344 (M⁺+1). Anal Calcd for C₂₃H₂₁NO₂: C, 80.44; H, 6.16: N. 4.08. Found: C, 80.67; H, 6.05; N. 3.93.

Compound **3f**-*E*: 31%; pale yellow oil; IR (film) 3402, 3057, 1709, 1601 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.70 (s. 3H). 5.17 (br s, 1H), 5.91 (s, 1H), 6.37-6.41 (m, 2H), 6.62-6.68 (m, 1H), 7.02-7.09 (m, 2H), 7.25-7.43 (m, 10H), 7.96 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.88, 53.99, 113.42, 117.59, 126.44, 127.05, 128.44, 128.74, 128.91, 129.08, 129.21, 132.17, 134.82, 141.20, 141.72, 146.81, 167.26; ESIMS *m*/*z* 344 (M⁺+1). Anal Calcd for C₂₃H₂₁NO₂: C, 80.44; H, 6.16; N, 4.08. Found: C, 80.76; H, 6.35; N, 4.02.

References and Notes

- For the general review on Baylis-Hillman reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Ciganek, E. In Organic Reactions: Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001-8062. (d) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490 and further references cited therein.
- For the synthesis of β-branched aza-Baylis-Hillman adducts, see:
 (a) Li, Q.: Shi, M.; Lyte, J. M.; Li, G. Tetrahedron Lett. 2006, 7699-7702. (b) Shi, Y.-L.; Xu, Y.-M.; Shi, M. Adv. Synth. Catal. 2004, 346, 1220-1230. (c) Back, T. G.; Rankie, D. A.; Sorbetti, J. M.; Wulff, J. E. Org. Lett. 2005, 7, 2377-2379. (d) Shi, Y.-L.; Shi, M. Tetrahedron 2006, 62, 461-475. (e) Utsumi, N.; Zhang, H.; Tanaka, F.; Barbas, C. F., III. Angew. Chem. Int. Ed. 2007, 46, 1878-1880.
- For the other synthesis of β-branched aza-Baylis-Hillman adducts and their synthetic applications, see: (a) Yamaguchi, A.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2007, 9, 3387-3390.
 (b) Vitis, L. D.; Troisi, L.; Granito, C.; Pindinelli, E.; Ronzini, L. Eur. J. Org. Chem. 2007, 356-362.
- For our recent chemical transformations involving Baylis-Hillman adducts, see: (a) Gowrisankar. S.: Lee, H. S.; Lee, K. Y.: Lee, J.-E.; Kim, J. N. *Tetrahedron Lett.* 2007, 48, 8619-8622. (b) Park, D. Y.: Lee, K. Y.: Kim, J. N. *Tetrahedron Lett.* 2007, 48, 1633-1636. (c) Park, D. Y.: Gowrisankar, S.: Kim, J. N. *Tetrahedron Lett.* 2006, 47, 6641-6645. (d) Park, D. Y.: Kim, S. J.: Kim, T. H.; Kim, J. N. *Tetrahedron Lett.* 2006, 47, 6315-6319. (e) Park, D. Y.; Lee, M. J.: Kim, T. H.: Kim, J. N. *Tetrahedron Lett.* 2005, 46, 8799-8803. (f) Kim, H. S.: Kim, S. H.: Kim, J. N. *Bull. Korean Chem, Soc.* 2007, 28, 1841-1843. (g) Gowrisankar, S.: Kim, H. S.; Lee, H. S.: Kim, J. N. *Bull. Korean Chem. Soc.* 2007, 28, 1844-1846.
- For the intermolecular palladium-mediated Heck type reaction of Baylis-Hillman adducts, see: (a) Basavaiah, D.: Muthukumaran, K. *Tetrahedron* 1998, 54, 4943-4948. (b) Sundar, N.; Bhat, S. V. Synth, Commun. 1998, 28, 2311-2316. (c) Perez, R.; Veronese, D.; Coelho, F.; Antunes, O. A. C. *Tetrahedron Lett.* 2006, 47, 1325-1328. (d) Kumareswaran, R.; Vankar, Y. D. Synth. Commun. 1998, 28, 2291-2302. (e) Kabalka, G. W.; Venkataiah, B.; Dong, G. Org. *Lett.* 2003, 5, 3803-3805. Intramolecular Heck reaction of Baylis-Hillman adducts was also studied, please see: (f) Park, J. B.; Ko, S. H.; Hong, W. P.; Lee, K.-J. *Bull. Korean Chem. Soc.* 2004, 25, 927-930.
- 6. Secondary tosylamide 1a was changed into the primary derivative 1a' readily with K₂CO₃ in CH₃CN in the absence of Pd catalyst (reflux, 18 h, quantitative). However, we could not observe the formation of any trace amounts of 1a' when we used KOAc as a base in CH₃CN in the absence of Pd catalyst (reflux, 18 h).
- The reaction of 1a and bromobenzene under the optimized conditions (entry 4 in Table 1) was examined, but we observed no reaction. Most of the starting material 1a was remained (70-80%) and we observed the formation of small amounts (< 20%) of 1a', which might be produced *via* the Pd-mediated rearrangement. For the related reference, please see: Park, J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K.-J. *Bull. Korean Chem. Soc.* 2004, 25, 27-28.
- For the synthesis of starting materials, see: (a) Kim, J. N.: Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173-175. (b) Lee, C. G.: Lee, K. Y.; Lee, S.; Kim, J. N. *Tetrahedron* 2005, 61, 1493-1499.