Crystal Structure and Spectroscopic Properties of cis- β - $\left[\mathrm{CrCl}_{2}(1,4,8,11\right.$-tetrazaundecane)chromium(III) Perchlorate

Jong-Ha Choi, ${ }^{\circ}$ Hag-Sung Kim, ${ }^{*}$ and Mohammad Hossein Habibi ${ }^{\ddagger}$
Deparment of Chemistry, Andong Vational Unversity, Andong 760-749, Korea. ${ }^{*}$ E-mail: jhchoiăandong.ac.kr
*Deparment of Emiromental \& Living Chemistry, Ullsan College, Ulsan 680-7+9, Korea
- Department of Chemistry, Eniversity of Isfahan, Isfahan 817+6-73+41, Iran

RecenedApril 15, 2008
Key Words: Structure. Chromium(III). Spectral properties. Tetradentate. cis- β Conformation

Linear flexible 1.4,8.11-tetraazaundecane (2.3,2-tet) (Fig. 1) provide a rich field of geometrical and conformational isomerism in octahedral transition metal complexes. ${ }^{1,2}$ The 2,3.2-tet ligand is a structural isomer of 1,4.7,11-tetraazaundecane ($2,2,3$-tet). The linear tetradentate with four nitrogen atoms as donors can adopt three different configurations in chromiun(III) complexes with two chloro ligands as shown in Figure 1. Generally, the chromium(III) tetradentate complexes have been shown to have a diverse stereochemistry. It is not possible from the $C D$ spectrum to assign the cis- α or cis- β configuration. The electronic absorption and infrared spectra often can be used diagnostically to identify the geometric isomers of chromium(III) complexes. ${ }^{3.9}$ However, it is also not easy to determine the geometric configurations of cis- α and β forms because their UV-visible and IR spectra have very similar pattens. In addition to, it should be noted that the assignments based on spectroscopic investigations are not always conclusive. ${ }^{\text {di }}$
Both trans and cis isomers of $\left[\mathrm{CrCl}_{2}(2.3,2\right.$-tet $\left.)\right] \mathrm{ClO}_{4}$ have been isolated. The synthesis, optical activity and hydrolysis kinetics of the dichlorochromium(III) complexes containing the 2.3,2-tet as a tetradentate ligand have been reported, but

2,3,2-tet

cis- α

trans

cis- β

Figure 1. The structure of $2,3,2$-tet and three possible geometnc isomers of $\left[\mathrm{CrCl}_{2}(2,3,2 \text {-tet })\right]^{-}$.
have not been structurally characterized. ${ }^{11}$
In this paper, we present the results on the structural and spectroscopic properties of $\left[\mathrm{CrCl}_{2}(2.3,2-\right.$ tet $\left.)\right] \mathrm{ClO}_{4}$.

The crystal data and details of data collection together with the refinement procedure of cis- $\beta-\left[\mathrm{CrCl}_{2}(2,3.2-\right.$ tet) $] \mathrm{ClO}_{4}$ at 150 K are given in Table 1 .

A perspective drawing of the molecular structure together with the atomic labeling is depicted in Figure 2, and selected bond lengths and angles are presented in Tables 2 and 3.
The structural analysis showed the space group $P 2_{1}$ of the monoclinic system with a cell of dimensions $a=6.4764(13)$. $b=11.801(2) . c=9.778(2) \AA, \beta=93.79(3)$ and $Z=2$. The compound consists of isolated complex cation $\left[\mathrm{CrCl}_{2}(2,3.2-\right.$ tet) $]^{+}$and ClO_{4} counter anion. The $\mathrm{Cr}-\mathrm{N}(2.3,2$-tet $)$ bond lengths are in the range $2.076(10)-2.112(8) \AA$, and the $\mathrm{Cl}-\mathrm{Cr}-$ Cl angle is $90.97(11)^{\circ}$. The $\mathrm{Cr}-\mathrm{Cl}$ bond lengths are 2.328 (3) and $2.360(3) \AA$. and can be compared to distances of

Table 1. Crystal data and structure refinement for $c i s-\beta\left[\mathrm{CrCl}_{2}\right.$ -(2,3,2-tet)] CiO_{4}

Empincal formula	C. $\mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{CrN}_{4} \mathrm{O}_{4}$
Formula Weight	382.62
Temperature	$150(2) \mathrm{K}$
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, $P 2$ (1)
Unit cell dimensions	$a=6.4704(13) \AA$
	$\begin{aligned} & b=11.801(2) \AA \beta=93.79(3)^{\circ} \\ & c=9.778(2) \AA \end{aligned}$
Volume	$745.063{ }^{3}$
Z	2
Density (calculated)	$1.706 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coeticient	$1.320 \mathrm{~mm}^{-1}$
$F(000)$	394
Crystal size	$0.325 \times 0.264 \times 0.260 \mathrm{~mm}^{3}$
θ range for data collection	4.04 to 27.50°.
Index ranges	$-8 \leq h \leq 8,-15 \leq k \leq 15,0 \leq 1 \leq 12$
Retlections collected	3278
Completeness to $\theta=27.50^{\circ}$	99.6\%
Retinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3278/1/173
Goodness-of-fit on F^{2}	1.192
Final R indices $[I>2 \sigma I)]$	$R_{1}=0.0920, w R_{2}=0.2757$

Figure 2. Perspective view of cis- $\beta-[\mathrm{CrCl}(2,3,2-\mathrm{tet})] \mathrm{ClO}_{4}$ at 150 K .
Table 2. Selected bond distances (\AA) and angles (${ }^{\circ}$) for cis- β -$\left[\mathrm{CrCl}_{2}(2,3,2-\mathrm{tet})\right] \mathrm{ClO}_{+}$

$\operatorname{Cr}(1)-\mathrm{N}(4)$	$2.077(9)$	$\operatorname{Cr}(1)-\mathrm{N}(1)$	$2.076(10)$
$\mathrm{Cr}(1)-\mathrm{N}(3)$	$2.085(9)$	$\operatorname{Cr}(1)-\mathrm{N}(2)$	$2.112(8)$
$\mathrm{Cr}(1)-\mathrm{Cl}(2)$	$2.328(3)$	$\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$2.360(3)$
$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{N}(1)$	$90.7(4)$	$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$82.6(4)$
$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{N}(3)$	$92.9(4)$	$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$169.7(3)$
$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$82.4(4)$	$\mathrm{N}(3)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$90.2(3)$
$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{Cl}(2)$	$92.1(3)$	$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{Cl}(2)$	$176.5(3)$
$\mathrm{N}(3)-\mathrm{Cr}(1)-\mathrm{Cl}(2)$	$89.5(3)$	$\mathrm{N}(2)-\mathrm{Cr}(1)-\mathrm{Cl}(2)$	$95.1(3)$
$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$92.0(3)$	$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$86.8(3)$
$\mathrm{N}(3)-\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$174.6(3)$	$\mathrm{N}(2)-\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$95.1(3)$
$\mathrm{Cl}(2)-\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$90.97(11)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Cr}(1)$	$107.3(7)$

Symmetry transfonmations used to generate equivalent atoms.
Table 3. Hydrogen-bonding geometry ($A,{ }^{1}$) tor for cis- β -$\left[\mathrm{CrCl}_{2}(2,3,2-\mathrm{tet})\right] \mathrm{ClO}_{+}$

D-H $\cdots \mathrm{A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	D $\cdots \mathrm{A}$	D-H \cdots A
NI-HIC $\cdots \mathrm{Ol}^{1}$	0.92	2.47	3.16 (1)	132
NI-H1D $\cdots{ }^{\text {Cli }}$	0.92	2.65	3.57 (1)	174
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{3 \mathrm{~m}}$	0.93	2.11	2.99 (1)	156
N3-H3 ${ }^{\text {c }}$ C11 ${ }^{11}$	0.93	2.56	3.468(9)	166
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{Cl}^{(2)}$	0.92	2.49	3.3661)	159
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{D} \cdots \mathrm{Ol}^{(2)}$	0.92	2.57	3.33 (1)	141
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{D} \cdots \mathrm{O}^{(0)}{ }^{(3)}$	0.92	2.15	3.00 (1)	153

Symmetry codes: i) $x . y-1$. $z=$ ii) $1-x, y$. $=$ iii) $-x .-0.5+y$. 1-z: iv) $-x$. $-0.5-1:-$
$2.3071(7)$ and $2.3243(7) \AA$ of $c i s-\beta-\left[\mathrm{CrCl}_{2}(2,2.3-\right.$ tet $\left.)\right] \mathrm{ClO}_{4}{ }^{12}$ The $\mathrm{Cr}-\mathrm{Nl}$ and $\mathrm{Cr}-\mathrm{N} 4$ bond lengths of $2.076(10)$ and $2.077(9) \AA$ of primary amines are slightly shorter than Cr N 2 and $\mathrm{Cr}-\mathrm{N} 3$ distances of $2.112(8)$ and $2.085(9) \mathrm{A}$ of secondary amines. The mean $\mathrm{Cr}-\mathrm{N}$ bond length of $2.088(8)$
\AA is normal, agreeing with many literature values, e.g. for $[\mathrm{Cr}($ cyclam $)($ ox $)] \mathrm{ClO}_{4}$ (cyclam $=1,4.8,11$-tetraazacyclotetradecane). cis-[Cr(cyclam)(ONO)] $] \mathrm{NO}_{2}$. mer- $[\mathrm{Cr}(\mathrm{dpt})-$ (glygly $) \mathrm{ClO}_{4}(\mathrm{dpt}=\mathrm{di}(3$-aminopropyl)amine: glygly $=\mathrm{gly}-$ cylglycinate), $\left[\mathrm{Cr}(e d m a)_{2}\right]^{-}$(edma $=$ethylenediaminemonoacetate $)$. $\left[\mathrm{Cr}(\mu-\mathrm{OH})_{2}(\mathrm{nta})_{2}\right]^{2}-(\mathrm{nta}=$ nitrilotriacetate $)$. trans$\left[\mathrm{Cr}\left(15\right.\right.$ aneN $\left.\left._{4}\right) \mathrm{F}_{2}\right] \mathrm{ClO}_{4}\left(15\right.$ aneN $_{4}=1.4 .8,12$-tetraazacyclopentadecane). trans $-\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{th}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ (Me_{2} th $=2.2$-di-methyl-1,3-diaminopropane) and cis- $\beta-[\mathrm{CrCl}(2,2.3$-tet $)]$ ClO_{4} (2,2.3-tet $=1,4.7,11$-tetraazaundecane). ${ }^{13.19}$

As usually observed. the five-membered chelate rings adopt a gauche, and six-membered rings are in the chair conformations. ${ }^{13,14,19}$ The average bond angles of five- and six-membered chelate rings around chromium(III) are the $82.5(4)$ and $90.2(3)^{\circ}$. respectively. The mean C-N (1.494 $\left.\AA\right)$ and C-C ($1.523 \AA$) distances in 2.3,2-tet ligand are typical for tetramine chromium(III) complexes. The C-N-C and C-$\mathrm{C}-\mathrm{N}$ angles are also typical. However. the $\mathrm{N}-\mathrm{C}$ distances (1.473(14)-1.513(15) A) involved in the coordinated nitrogen atoms is slightly longer than the corresponding N-C distances ($1.463(3)-1.474(3) \AA$) of the free ligand. ${ }^{20}$

The uncoordinated $\mathrm{ClO}_{4}{ }^{-}$anions remain outside the coordination sphere. The perchlorate group has close to the tetrahedral geometry with $\mathrm{Cl}-\mathrm{O}$ lengths in the range $1.437(8)-1.458(10) \AA$ and the $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angle ranging from $108.6(6)$ to $110.6(6)^{\circ}$. The crystals are held together by hydrogen bonds between primary NH_{2} groups. secondary NH groups, chloro ligands and perchlorate anions. Table 3 contains the distances and angles of hydrogen bonds. These hydrogen-bonded networks help to stabilize the crystal structure. Within the unit cell of the title complex there are only two molecules while the cis- $\beta-\left[\mathrm{CrCl}_{2}(2.2,3-\mathrm{tet})\right] \mathrm{ClO}_{4}$ in the space group of Pbca of the orthorhombic system with four molecules of the Λ-(R,S)-cation and four molecules of the molecules of the enantiomeric $\Delta-(\mathrm{S}, \mathrm{R})$-cation in a cell of dimensions $a=6.4764$ (13). $b=11.801(2) . c=9.778(2) A$ and $\beta=93.79(3)^{\circ}$. The differences in the numbers of molecules and diastereomers within unit cell may be concerned the sharp-line electronic transition splitting pattern of chromium(III) complex. ${ }^{12}$

The assignment of geometrical configuration can be suggested by inspection of the $d-d$ absorption spectra ${ }^{21}$ The position of the spin-allowed transitions in the electronic spectra. the number of bands and their coefficients are usually reliable indicators for distinguishing the trans and cis isomers. Electronic absorption spectroscopy of a tetragonally distorted chromium(III) complexes is revealing. with significant splitting under the ${ }^{4} A_{2 g} \rightarrow{ }^{4} T_{2 g}$ envelope occurring for the trans geometrical isomers. but small or undetected splitting observed the cis isomers. In general. the more symmetrical trons cluromium(III) complexes with two chloro and flexible tetradentate 2.3.2-tet ligand have three bands in the visible region, and these bands are located at higher wavelengths and have lower extinction coefficients than those of the less symmetrical $c i s$-isomers. The visible absorption spectrum of $\left[\mathrm{CrCl}_{2}(2,3.2-\text { tet })\right]^{+}$in aqueous solution exhibits two main bands, one at $18940 \mathrm{~cm}^{-1}\left(v_{1}\right)$.

Figure 3. The mid-infrared spectrum of $c i s-\beta-\left[\mathrm{CrCl}_{2}(2,3,2\right.$-tet $\left.)\right]$ ClO_{4} at 298 K .
and the other at $24810 \mathrm{~cm}^{-1}\left(v_{2}\right)$, corresponding to the ${ }^{4} A_{-g}$ $\rightarrow{ }^{4} T_{5 g}$ and ${ }^{4} A_{2 g} \rightarrow{ }^{4} T_{1 g}\left(O_{13}\right)$ transitions, respectively. The electronic spectrum is fully consistent with the cis stereochemistry. Although the absorption spectrum confirms the cis assignments. it does not establish whether a complex is $c i s-\alpha$ or cis- β configuration.

The infrared spectroscopy is one of the useful tool in the configuration assigmment of two cis and one trons isomers of dichlorochromium(III) complexes with tetradentate ligand ${ }^{2+2}$ It is inmediately obviously that the cis- α form has two identically positioned Cl atoms. while in the cis- β geometry they are differently disposed with respected to the rest of the molecule. The mid- infrared spectrum of cis-$\left[\mathrm{CrCl}_{-}(2,3.2\right.$-tet $\left.)\right] \mathrm{ClO}_{4}$ in the frequency range of $1800-400$ cm^{-1} is presented in Figure 3.
The strong peaks at 1579 and $1598 \mathrm{~cm}^{-1}$ are due to the NH_{2} asymmetric deformation mode. The deformation mode at about $1600 \mathrm{~cm}^{-1}$ give one main absorption for cis- α and trans isomers whereas cis- β isomer gives two peaks with lower-energy absorption. The rather weak CH_{z} deformation peaks are observed in the region $1470-1420 \mathrm{~cm}^{-1}$. Medium to weak absorptions in the region $1330-1290 \mathrm{~cm}^{-1}$ can be assigned to the symmetric NH_{2} deformation. The $\mathrm{C}-\mathrm{N}$ stretching frequency occurs as a weak band at $1375 \mathrm{~cm}^{-1}$. The four strong absorptions at 989.1009 .1043 and 1090 cm^{-1} are appeared in the CH_{2} twisting region. It is well known that the cis- β isomer exhibits four bands in the 920 to $860 \mathrm{~cm}^{-1}$ while the cis- α isomer and trans isomer show only two strong bands and one weak absorption, respectively, in The four absorption peaks at $902.879,856$ and $835 \mathrm{~cm}^{-1}$ are observed due to the CH_{2} rocking vibrational frequencies. The very strong absorptions at $1090.930,625$ and $458 \mathrm{~cm}^{-1}$ are assigned to ionic perchlorate. Metal-ligand stretching bands occur in the far infrared range. ${ }^{22}$ The broadening or the split of the perchlorate peak in the studied complexes results from the reduction in the symmetry of the ClO_{+}^{-}ion to $C_{3 v}$ or $C_{3 v}$ due to its interaction with the amine hydrogen atoms and to the formation of partial or strong H -bonding.
The peaks in the range $490-410 \mathrm{~cm}^{-1}$ can be assigned to the $\mathrm{Cr}-\mathrm{N}$ stretching mode. ${ }^{23.27}$ The $\mathrm{Cr}-\mathrm{N}$ and $\mathrm{Cr}-\mathrm{Cl}$ stretching bands in the far-infrared spectrum to which we have assigned a cis dichloro geometric configuration exhibit
splitting, whereas the trans isomer shows no splitting of these bands. as would be expected from the lower symmetry of the $\mathrm{Cr}-\mathrm{N}$ skeleton in the cis complex. For the cis$\left[\mathrm{CrCl}_{2} \mathrm{~N}_{4}\right]^{-}$complex with $\mathrm{C}_{2 \mathrm{y}}$ symmetry. the group theoretical analysis predicts four $\mathrm{Cr}-\mathrm{N}$ and two $\mathrm{Cr}-\mathrm{Cl}$ infraredactive stretching vibrations. respectively. The peaks in the range $480-410 \mathrm{~cm}^{-1}$ can be assigned to the $\mathrm{Cr}-\mathrm{N}(2.3,2$-tet $)$ stretching modes. Typically, all chloro chromium(III) complexes exlibit absorption bands in the $370-320 \mathrm{~cm}^{-1}$ region due to the $v(\mathrm{Cr}-\mathrm{Cl}){ }^{1}$ The absorption at $329 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{Cr}-\mathrm{Cl}$ stretching modes. ${ }^{12,28} \mathrm{~A}$ number of absorption bands below $300 \mathrm{~cm}^{-1}$ arise from the skeletal bending and lattice vibration modes.

In conclusion, it is found that the title complex cry stallizes in the space group $P 2_{1}$ of the monoclinic system with two mononuclear formula units in a cell. The complex cation unit has its central Cr atom in a distorted octahedral coordination with four nitrogen atoms of the 2.3,2-tet ligand and two chlorine atoms in a cis- β position. The IR and visible absorption spectral properties are in agreement with the result of structural analysis.

Experimental Section

The free ligand 1.4,8.11-tetraazaundecane was prepared using previously described procedure ${ }^{\text {ss }}$ or can be purchased from Strem Chemical Company, USA. All other chemicals were of reagent grade or better quality and used without further purification. The complex of cis- $\beta-\left[\mathrm{CrCl}_{2}(2,3.2\right.$ tet) $] \mathrm{ClO}_{4}$ was prepared by the method of House and Yang. ${ }^{11}$ The crude product was then dissolved in a minimum amount of water and followed by precipitation with a saturated solution of sodium perchlorate. Recrystallization from aqueous solution afforded dark violet crystals suitable for crystallographic analysis.

The far-infrared spectrum in the region $600-50 \mathrm{~cm}^{-1}$ was recorded with a Bruker 113 y spectrometer in Nujol mull sandwiched between polyethylene plates. The mid-infrared spectrum was obtained with a Mattson Infinities series FTIR spectrometer using a KBr pellet. The UV-visible absorption spectrum was recorded with a HP 8453 diode array spectrophotometer.

Single-crystal X-ray diffraction data were collected on a Bruker SMART 1 K CCD diffractometer using graphitemonochromated Mo K α radiation $(\lambda=0.71073 \AA)$. The unit cell parameters were determined using SMART ${ }^{3.1}$ and refined based on the positions of all strong reflections using SAINT. ${ }^{311}$ Absorption correction was by SADABS ${ }^{31}$ based on synmetry-equivalent and repeated reflections. The structure was solved by direct methods using SIR 97^{32} and refined by full-matrix least-squares on F^{2} using SHELXTL. ${ }^{33}$ Molecular graplics were produced using DIAMOND-3. ${ }^{34}$ Nonhydrogen atoms were refined anisotropically; hydrogen atoms were first located in a difference map: $\mathrm{N}-\mathrm{H}$ hydrogen atoms were freely refined and C-H hydrogen atoms were constrained to ride on the parent carbon atom. with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methylene groups.

Supplementary Material. Full cry stallographic data have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 679242 . Copies of this information may be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road. Cambridge CB2 IEZ. UK (fax: +44-1223-336-033: e-mail: depositaccdc.cam.ac. uk or www: http.///www.cedc.cam.ac.uk).

References

1. House. D. A.: Yang. D. Inorg. Chem. 1982. 21. 2999.
2. Knight. P. D.: Scott. P. Coord. Chem. Rev: 2003. 242. 125.
3. Poon. C. K.: Pun. K. C. Inorg. Chem. 1980. 19. 568.
4. Choi. J. H.; Hoggard. P. E. Polvhedron 1992. 11, 2399.
5. Choi, I. H. Spectrochim Acta $2000,56.4,1653$.
6. Choi, J. H. Chem. Phys. 2000, 256. 29.
7. Choi. J. H.: Hong. Y. P.: Park. Y. C. Spectrochim. Acta 2002. 584. 1599.
8. Choi. J. H.: Park. Y. C. Bull. Korean Chem. Soc. 2003. 2t. 384.
9. Choi, J. H.; Oh. I. G.; Linder, R.: Sehönherr. T. Chem. Phes. 2004. 297.7
10. Stearns. D. M.: Armstrong. W. H. Ifrorg (them. 1992, 31. 5178.
11. House. D. A.: Yang. D. Inorg. Chim. Acta 1983. 7H. 179.
12. Choi. J. H.: Choi. S. Y:: Hong. Y. P.: Ko. S. O.: Ryoo. K. S.: Lee. S. H.: Park. Y. C. Spectrochin. Acta 2008. 70.1 .619.
13. Choi, J. H.: Oh. I. G.; Suzuki. T.: Kaizaki, S. J. M/of. Struct. 2004. 694.39.
14. Choi, I. H.; Oh. I. G.: Lim. W. T.: Park, K. M. Acta Cfyst. 2004. C60. m238.
15. Choi. J. H.: Suh. I. H.: Kwak. S. H. Acta Civst. 1995. C51. 1745.
16. Choi. J. H.: Suzuki. T.: Subhan. M. A.: Kaizaki. S.: Park. Y. C. Acta Crust 2002. C58. m409.
17. Choi. T. H.: Suzuki. T.: Kaizaki. S. Acta Cmst. 2003. E58. m812.
18. Choi, J. H.: Oh, I. G.; Ryoo. K. S.: Lim. W. T.; Park, Y. C.: Habibi. M. H. Spectrochim. Acta 2006, 65A, 1138 .
19. Choi, J. H.: Clegg, W.: Nichol, G. S.; Lee. S. H.: Park, Y. C.; Habibi. M. H. Spectrochim. Acta 2007. 68.4. 796.
20. Choi. J. H.: Clegg. W.: Harrington. R. W.: Yoon. H. M.: Hong. Y. P. Acta Crust 2006. E62. o644.
21. Lever. A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, 1984.
22. Nakamoto. K. Infrared and Raman Spectra of Inorganic and Coordination Componnds. Part B. 5th ed: John Wiley \& Sons: New York. 1997: p 23 and p 82.
23. Choi. J. H. Bufl. Koream Chem. Soc. 1993. 14. 118.
24. Choi, J. H.: Oh. I. G. Buhl. Korean Chem. Soc. 1993. 14, 348.
25. Choi. J. H. Bull. Korean Chem. Soc. 1994. 15, 145.
26. Choi. J. H. Bull. Korean Chem. Soc. 1997. 18, 819.
27. Choi. J. H. Bull. Korean Chem. Soc. 1999. 20. 81.
28. Choi. J. H. Bull. Korean Chem. Soc. 1998. 19. 575.
29. Brubaker. G. R.: Schaeter. D. P. Inorg Chen. 1971. 10. 811.
30. Sl $A R T$ and SAIMT: Bruker AXS: Madison. Wisconsin. USA, 2001.
31. Sheldrick, G. M. S. $A D . A B S$; University of Göttingen: Germany. 2003.
32. Altomare. A.: Burla. M. C.: Camalli. M.: Cascarano. G.: Giacovazzo. C.: Guargliardi. A.: Moliterni. A. G. G.: Polidori. G.: Spagna. R.J. Appl. Corstallogr. 1999. 32, 115.
33. Sheldrick. G. M. SHELITL. Version 6: Bruker AXS Inc.: Madison, Wisconsin. USA. 2001.
34. Brandenburg. K: Putz. H. ELAMOND-3: University of Bonn: Germany. 2004.
