Discovery and Synthesis of Novel N-Cyanopyrazolidine and N -Cyanohexahydropyridazine Derivatives as Cathepsin Inhibitors

Jong Hwan Song, Sun Gi Kim, Zae Sung No, Young-Lan Hyun, ${ }^{\dagger}$ Dong Ju Jeon, and Ikyon Kim*
Center for Medicinal Chemistry Korea Research Institute of Chemical Technologv, Daejeon 305-600, Korea
E-mail: djeonakrict.re kr; ikyonakrict.re.kr
${ }^{\dagger}$ Crustalgenomics, Inc., Seoul 138-736, Korea
Received May 7, 2008

Abstract

The design. synthesis and biological evaluation of structurally novel A -cyanopy razolidine and N -cyanohexahydropyridazine derivatives as cathepsin inhibitors are described. In witro assay reveals that several compounds exhibit highly potent and selective profiles against cathepsins K or S .

Key Words: Cathepsins, Rhematoid arthritis. N-Cyanopyrazolidine, N-Cyanohexahydropyridazine

Introduction

Cathepsins are lysosomal cysteine proteases of the papain family and have been recognized to play a crucial role in a variety of biological processes. ${ }^{1}$ For example, cathepsins B. L. and S are implicated in immunological responses while cathepsin K is a crucial enzyme for bone resorption. ${ }^{3}$ Thus. investigation of these enzymes as potential drug targets for several diseases such as rheumatoid arthritis osteoporosis. various types of cancers. stroke. and Alzheimer`s disease has been actively pursued. Given the structural homology of cathepsin enzymes. however. selective inhibition of the target cathepsin over other cathepsin family is a prerequisite for further biological evaluation. In the course of our research program directed towards the development of antirheumatoid arthritis agents via inhibition of cathepsin B. N cyanopyrazolidine compound 1 was identified as a hit as a consequence of HTS utilizing the in-house library. Here we wish to report our design. synthesis. and biological evaluation of N -cyanopyrazolidine and N -cyanohexahydropyridazine derivatives for selective cathepsin inhibitors.
As described in Figure 1, isoleucine-derived compound 1 exhibits potent and selective inhibition of cathepsin B while displaying no acute toxicity. Based upon these initial data. we decided to investigate the synthesis and biological activity of a series of N -cyanopyrazolidines and N -cyanohexahydropyridazines for selective cathepsin B inhibitors as shown in Scheme 1. For α-amino acid part. isoleucine. leucine. valine phenylalanine. and tyrosine were employed.
Synthesis of N -cyanopyrazolidine and N -cyanohexahydro-

1
cathepsin $\mathrm{K} \mid \mathrm{C}_{50}=2.60 \mu \mathrm{M}$ cathepsin $\mathrm{LIC}_{50}=0.80 \mu \mathrm{M}$ cathepsin $\mathrm{BIC} \mathrm{C}_{50}=0.01 \mu \mathrm{M}$

Acute toxicity: no toxicity

- po 1,000 mg $/ \mathrm{kg}$
-ip $500 \mathrm{mg} / \mathrm{kg}$

Figure 1

Scheme 1
pyridazine derivatives are outlined in Schemes 2 and 3 Coupling of amino acids 6 with the known pyrazolidine 7 and hexahydropyridazine $\mathbf{8}^{4}$ in the presence of EDCI and $\mathrm{Et}_{3} \mathrm{~N}$ afforded the acylated pyrazolidines 9 and hexalydropyridazines 10 , respectively. The resulting amides 9 and 10 were then treated with cyanogen bromide and sodium acetate to give N-cyanopyrazolidines 2 and N-cyanohexahydropyridazines $\mathbf{3}$ in good to excellent yields.

For the synthesis of N -cyano derivatives bearing N -arylsubstituted amino acyl groups. CuI catalyzed N -arylation of amino acids was first conducted with various aryl bromides under the Ma`s condition ${ }^{5}$ to furnish N-arylated amino acids 11. By following the similar sequence as above. N-cyanopyrazolidine and N -cyanohexahydropyridazine analogues possessing N-arylaminoacyl groups. 4 and 5 were prepared without any event

In vitro inhibition assays of cathepsins B. L. K. and S with these compounds were conducted. ${ }^{6}$ As shown in Tables 1-4. several compounds were identified to possess a good selectivity profile over these cathepsins.

Interestingly, rather cathepsin K- or cathepsin S-selective compounds were discovered. Particularly. both potent inhibition and excellent selectivity against cathepsin K were observed in case of several N -cyanohexahydropyridazine derivatives ($\mathbf{3} \mathbf{b}, \mathbf{5}$. and $\mathbf{5 j}$) whereas compounds such as $\mathbf{2 c}$. 2f. 3e, +g. 4I, and $\mathbf{4 m}$ exhibit great potency and selectivity against cathepsin S . It seemed that hexahydropyridazine ring is better than pyrazolidine for cathepsin K selectivity. As an R_{1} part. sterically bulky groups such as benzyl moiety decrease not only selectivity but also potency for cathepsin

Scheme 2

> 4a: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=4-\mathrm{Cl}$
> 4b: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=3-\mathrm{Cl}$
> $4 \mathrm{c}: \mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
> 4d: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=3-\mathrm{CF}_{3}$
> 4e: $\mathrm{R} 1=$ isobutyl. $\mathrm{R}_{3}=4-\mathrm{Cl}$
> 4f: $\mathrm{R}_{1}=$ isobutyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
> 4g: $\mathrm{R}_{1}=$ isobutyl, $\mathrm{R}_{3}=4-\mathrm{CN}$
> 4h: $\mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
> 4i: $R_{1}=$ isopropyl, $R_{3}=3-\mathrm{CF}_{3}$
> 4]: $R_{1}=$ benzyl, $R_{3}=4-C F_{3}$
> 4k: $\mathbf{R}_{1}=$ benzyl, $\mathrm{R}_{3}=3-\mathrm{CF}_{3}$
> 41: $R_{1}=$ benzyl, $R_{3}=4-\mathrm{CN}$
> $4 m: R_{1}=4$-hydroxybenzyl, $\mathrm{R}_{3}=4-\mathrm{CN}$
> 5a: $\mathrm{R}_{1}=$ sec-buty, $\mathrm{R}_{3}=4-\mathrm{F}$
> 5b: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=3-\mathrm{F}$
> 5c: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=4-\mathrm{Cl}$
> 5d: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=3-\mathrm{Cl}$
> 5e: $\mathrm{R}_{1}=$ sec-butyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
> 5f: $\mathrm{R}_{5}=$ sec-butyl, $\mathrm{R}_{3}=3-\mathrm{CF}_{3}$
> $5 \mathrm{~g}: \mathrm{R}_{1}=$ isobutyl, $\mathrm{R}_{3}=4-\mathrm{F}$
> 5h: $\mathrm{R}_{1}=$ isobuty|, $\mathrm{R}_{3}=3-\mathrm{F}$
> 5i: $R_{1}=$ isobutyl. $R_{3}=4-\mathrm{Cl}$
> 5j: $\mathrm{R}_{1}=$ isobutyl, $\mathrm{R}_{3}=3-\mathrm{Cl}$
> $5 \mathrm{k}: \mathrm{R}_{1}=$ is obutyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
> 5I: $\mathrm{R}_{1}=$ isobutyl. $\mathrm{R}_{3}=3-\mathrm{CF}_{3}$
$\mathbf{5 m}: \mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=4-\mathrm{F}$
$5 \mathrm{n}: \mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=3-\mathrm{F}$
$5 \mathrm{o}: \mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=4-\mathrm{Cl}$
$5 \mathrm{p}: \mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=3-\mathrm{Cl}$
$5 \mathrm{q}: \mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
$5 \mathrm{r}: \mathrm{R}_{1}=$ isopropyl, $\mathrm{R}_{3}=3-\mathrm{CF}_{3}$
$5 \mathrm{~s}: \mathrm{R}_{1}=$ benzyl, $\mathrm{R}_{3}=4-\mathrm{F}$
$5 \mathrm{t}: \mathrm{R}_{1}=$ benzyl, $\mathrm{R}_{3}=3-\mathrm{F}$
$5 \mathrm{u}: \mathrm{R}_{1}=$ benzyl, $\mathrm{R}_{3}=3-\mathrm{Cl}$
$5 \mathrm{v}: \mathrm{R}_{1}=$ benzyl, $\mathrm{R}_{3}=4-\mathrm{CF}_{3}$
$5 \mathrm{w}: \mathrm{R}_{1}=$ benzyl, $\mathrm{R}_{3}=3-\mathrm{CF}_{3}$

Scheme 3

Table 1

	compounds	$\mathrm{IC}_{50}(\mu \mathrm{M})$			
		Cat B	Cat L	Cat K	Cat S
	2 a	0.049	1.100	>1	0.255
	2b	0.027	0.175	0.007	0.009
	2 c	0.680	0.755	-	0.003
	2d	0.037	0.925	0.031	0.023
	2 e	0.028	0.095	0.029	0.032
	2 f	0.120	>10	0.093	0.004

[^0]Table 2

	compounds	$\mathrm{IC}_{51}(\mu \mathrm{M})$			
		Cat B	Cat L	Cat K	Cat S
	3 a	0.017	0.185	0.008	0.018
	3b	0.039	0.380	0.001	0.040
	3 c	0.021	0.085	0.028	0.004
	3d	0.032	0.180	0.007	0.008
	3 e	0.056	0.435	0.055	0.004
	3 f	0.011	0.145	0.009	0.031
	3 g	0.495	2.150	0.325	0.023

Table 3

pounds		$\mathrm{IC}_{50}(\mu \mathrm{M})$			
		Cat B	Cat L	Cat K	Cat S
	4 a	0.037	0.360	>1	0.027
	4 b	0.015	0.100	0.040	0.005
	4 c	0.017	0.980	0.170	0.033
	4 d	0.092	0.046	-	0.031
	4 e	0.056	0.690	>1	0.013
	4 f	0.083	0.490	>1	0.007
	4g	0.525	1.250	1.000	0.013
	4h	0.045	0.470	>1	0.039
	$4 i$	0.022	0.100	>1	0.021
	4 j	0.300	>10	-	0.024
	$4 k$	0.053	1.200	>1	0.010
	41	>10	>10	-	0.033
	4 m	5.100	>10	-	0.037

-: No data ayailable tor this compound

Table 4

compounds		$\mathrm{IC} \mathrm{Sl}_{1}(\mu \mathrm{M})$			
		Cat B	Cat L	Cat K	Cat S
	5 a	0.185	0.340	-	0.024
	5b	0.135	0.370	-	0.050
	5 c	0.120	0.343	0.056	0.030
	5d	0.043	0.210	0.004	0.007
	5e	0.096	0.210	0.024	0.045
	5 f	0.044	0.046	0.003	0.019
	5g	0.052	0.180	0.036	0.016
	5h	0.046	0.300	0.042	0.006
	$5 i$	0.039	0.150	0.012	0.005
	5j	0.028	0.086	0.002	0.016
	5k	0.037	0.100	0.015	0.005
	51	0.015	0.032	0.005	0.003
	5 m	0.056	0.435	0.052	0.035
	5n	0.046	0.900	0.135	0.044
	50	0.110	0.610	0.024	0.038
	5p	0.032	0.240	0.011	0.029
	5q	0.041	0.430	0.040	0.036
	5 r	0.023	0.048	0.023	0.019
	$5 s$	0.180	0.850	-	0.035
	$5 t$	0.077	1.300	0.700	0.031
	5u	0.053	0.530	0.560	0.016
	5	0.165	0.223	-	0.041
	5w	0.042	0.090	0.140	0.007

-: No data available for this compound
K. It should be mentioned that N-cyanopyrazolidine ring seemed crucial for cathepsin S selectivity. For selectivity against cathepsin S . isobutyl and isopropyl groups as well as benzyl and 4-hydroxybenzyl groups can be employed for R_{1} part. implying more structural flexibility for this region. In addition. cyano group attached to the para position of the phenyl group in the series of $\mathbf{4}(4 \mathrm{~g} .4 \mathrm{l}$. and $\mathbf{4 \mathrm { m }})$ is conceived to play a role in the selectivity against cathepsin S . Although potency of these derivatives against cathepsin B did not
increase much compared with that of hit compound 1. two compounds ($\mathbf{4} \mathbf{b}$ and $\mathbf{5} \mathbf{n}$) having selective inhibitory activity against cathepsins B and S were elected for further biological evaluation.?

In conclusion. a series of N -cyanopyrazolidine and N cyanohexalydropyridazine compounds were synthesized in search for potent and selective cathepsin B inhibitors. However. contrary to our expectation. several compounds with promising inhibitory activity and selectivity against cathepsins K or S were discovered, respectively. Given the fact that cathepsin K is a good target for curing osteoporosis whereas cathepsin S is an attractive target for various inflanmatory diseases, these compounds might be a useful lead for these therapeutic areas. Further studies are ongoing along this line and will be reported in due course.

Experimental Section

General procedure for the synthesis of $9,10,12$, and 13: To a stirred solution of acid $6(6 \mathrm{mmol})$ in dichloromethane (20 mL) at rt were added triethylamine (12 mmol), pyrazolidine 7 (6 mmol), and EDCI (N -(3 -dimethylamino-propyl)- N^{\prime}-ethylcarbodiimide hydrochloride, 6 mmol) successively. After being stirred at rt for 16 h . the reaction mixture was washed with brine. dried over MgSO_{4}. and concentrated in vactu. The resulting residue was purified by silica gel column chromatography (hexanes:ethyl acetate) to afford the corresponding amide 9 . Compounds 10.12 . and 13 were prepared by following the similar procedure above.

General procedure for the synthesis of $\mathbf{2 , 3}, 4$, and 5 : To a stirred solution of amide 9 (1 mmol) in 5 mL of MeOH $\mathrm{H}_{2} \mathrm{O}$ ($1: 1$) were added NaOAc (2 mmol) and CNBr (3 mmol) at rt . After being stirred at rt for 3 h , the reaction mixture was concentrated in vacuo. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The aqueous layer was extracted with $\mathrm{CH}_{3} \mathrm{Cl}_{2}$ one more time. The combined organic layers were dried over MgSO_{4}. filtered. and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexanes ethyl acetate) to give 2 . Compounds 3,4 , and 5 were prepared by following the similar procedure above.

2a: $300 \mathrm{MHz}^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \boldsymbol{\delta 7 . 3 5 - 7 . 2 9}(\mathrm{m} .5 \mathrm{H}) .5 .49$ $(\mathrm{m}, 1 \mathrm{H}), 5.08(\mathrm{~m} .2 \mathrm{H}) .4 .98(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m} .1 \mathrm{H}) .3 .46(\mathrm{~m}$, $1 \mathrm{H}) .2 .06(\mathrm{~m} .2 \mathrm{H}) .1 .75(\mathrm{~m} .1 \mathrm{H}) .1 .50(\mathrm{~m} .1 \mathrm{H}) .1 .12(\mathrm{~m} .1 \mathrm{H})$. 0.94 (d. $3 \mathrm{H} . J=6.7 \mathrm{~Hz}$). 0.88 (t. $3 \mathrm{H} . ~ J=7.4 \mathrm{~Hz}$): 2b: 300 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.66-7.30(\mathrm{~m} .5 \mathrm{H}) .4 .72-4.62(\mathrm{~m}$, $2 \mathrm{H}) .3 .86-3.82(\mathrm{~m} .1 \mathrm{H}) .3 .68-3.56(\mathrm{~m}, 2 \mathrm{H}) .3 .46-3.42(\mathrm{~m}$, $1 \mathrm{H}) .2 .39-2.33(\mathrm{~m}, 2 \mathrm{H}) .2 .02(\mathrm{~m}, 2 \mathrm{H}) .1 .70-1.66(\mathrm{~m}, 2 \mathrm{H})$. $1.27-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 6 \mathrm{H}): \mathbf{2 c}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.95(\mathrm{~d}, 1 \mathrm{H} . J=8.5 \mathrm{~Hz}), 4.69(\mathrm{~m} . \mathrm{IH}) .4 .09(\mathrm{~m}$, $1 \mathrm{H}) .3 .60(\mathrm{~m} .1 \mathrm{H}) .3 .49(\mathrm{~m} .1 \mathrm{H}), 2.30(\mathrm{~m} .2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.52(\mathrm{~m} .1 \mathrm{H}) .1 .42(\mathrm{~s} .9 \mathrm{H}) .1 .20(\mathrm{~m} .1 \mathrm{H}) .1 .02(\mathrm{~d} .3 \mathrm{H} . J=6.8$ Hz). 0.92 (t. $3 \mathrm{H}, J=7.5 \mathrm{~Hz}$): 2d: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{~d}, 1 \mathrm{H} . J=9.7 \mathrm{~Hz}), 4.45(\mathrm{~m} .1 \mathrm{H}) .3 .90(\mathrm{~m}$, $1 \mathrm{H}) .3 .66-3.55(\mathrm{~m} .2 \mathrm{H}), 3.34(\mathrm{~m}, \mathrm{lH}) .2 .36(\mathrm{~m} \mathrm{2H}), 1.41(\mathrm{~s}$, 9 H). 1.08 (d. $3 \mathrm{H} . J=6.8 \mathrm{~Hz}$). 1.03 (d. $3 \mathrm{H} . J=6.8 \mathrm{~Hz}$): $2 \mathrm{e}:$ $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~d}$.
$1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.73$ (q. $2 \mathrm{H} . J=20.7 \mathrm{~Hz}$), $4.79(\mathrm{~m} . \mathrm{IH})$. $4.12-4.03(\mathrm{~m} .1 \mathrm{H}), 3.67-3.39$ (m. 2 H). 2.35-2.14 (m. 2 H). 1.06 (d. $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$). 0.94 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$): 3b: 300 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}\right) \delta 7.34-7.26(\mathrm{~m} .5 \mathrm{H}), 5.29(\mathrm{~d} .1 \mathrm{H}, J$ $=9.0 \mathrm{~Hz}), 5.14-5.02(\mathrm{~m}, 2 \mathrm{H}) .4 .81(\mathrm{~m}, 1 \mathrm{H}) .4 .51(\mathrm{~d} .1 \mathrm{H}, J=$ 13.2), 3.55 (m. 2H). 3.19-3.15 (m. 1H), 2.03 (m. IH). 1.82$1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m} .1 \mathrm{H}) .1 .32(\mathrm{~m}, 1 \mathrm{H}), 1.0 \mathrm{I}(\mathrm{d}, 3 \mathrm{H}$. $J=6.6 \mathrm{~Hz}), 0.91(\mathrm{t} .3 \mathrm{H} . J=7.4 \mathrm{~Hz}): 3 \mathrm{c}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.25(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.96-4.91(\mathrm{~m} . \mathrm{IH}) .4 .49$ (d, IH. $J=13.8 \mathrm{~Hz}$). 3.53-3.50 (m, 2H). 3.16-3.08 (m, IH). 1.83-1. $68(\mathrm{~m}, 4 \mathrm{H}) .1 .52-\mathrm{I} .48(\mathrm{~m}, 2 \mathrm{H}) .1 .44(\mathrm{~s} .9 \mathrm{H}), 1.02(\mathrm{~d}$. $3 \mathrm{H} . J=6.3 \mathrm{~Hz}) .0 .91(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}): 3 \mathrm{~d}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m} .5 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{IH} . J=8.7 \mathrm{~Hz})$. $5.14-4.99(\mathrm{~m}, 2 \mathrm{H}) .4 .96-4.91(\mathrm{~m} . \mathrm{IH}) .4 .49(\mathrm{~d}, \mathrm{IH} . J=13.8$ $\mathrm{Hz}), 3.53-3.50(\mathrm{~m} .2 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.68(\mathrm{~m}$. $4 \mathrm{H}), 1.52-1.48(\mathrm{~m} .2 \mathrm{H}) .1 .02(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.91(\mathrm{~d}$. $3 \mathrm{H}, J=6.6 \mathrm{~Hz}): 3 \mathrm{e}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.03-5.00$ $(\mathrm{d}, \mathrm{IH}, J=9.0 \mathrm{~Hz}) .4 .73-4.68(\mathrm{~m} .1 \mathrm{H}), 4.53-4.49(\mathrm{~d} .1 \mathrm{H}, J=$ $9.9 \mathrm{~Hz}) .3 .60-3.52(\mathrm{~m} .2 \mathrm{H}) .3 .18-3.10(\mathrm{~m} .1 \mathrm{H}) .2 .13-2.01(\mathrm{~mm}$. $2 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 2 \mathrm{H}) .1 .80(\mathrm{~m}, \mathrm{H}) .1 .43(\mathrm{~s}, 9 \mathrm{H}) .1 .03-$ 1.01 (d, $3 \mathrm{H} . J=6.6 \mathrm{~Hz}$). 0.93 (d. $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$): 3f: 300 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.34(\mathrm{~m} .5 \mathrm{H}), 5.28(\mathrm{~d} .1 \mathrm{H}, J$ $=9.6 \mathrm{~Hz}) .5 .15-5.03(\mathrm{~m} .2 \mathrm{H}), 4.78-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.5 \mathrm{I}(\mathrm{d}$. $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.53-3.50(\mathrm{~m} .2 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H})$. $2.06-1.99(\mathrm{~m}, 2 \mathrm{H}) .1 .83-1.79(\mathrm{~m} .1 \mathrm{H}), 1.05-1.03(\mathrm{~d} .3 \mathrm{H}, J=$ 6.6 Hz), 0.93 (d. $3 \mathrm{H} . J=6.9 \mathrm{~Hz}$): $3 \mathrm{~g}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.18(\mathrm{~m} .5 \mathrm{H}) .5 .09-5.05(\mathrm{~m} .2 \mathrm{H}) .4 .51-4.47$ $(\mathrm{m} .1 \mathrm{H}), 3.53-3.50(\mathrm{~d} .1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.53-3.50(\mathrm{~m}, 2 \mathrm{H})$. $3.20-3.11(\mathrm{~m}, 1 \mathrm{H}) .3 .17-3.08(\mathrm{~m}, 4 \mathrm{H}), 3.06-2.98(\mathrm{~m} .1 \mathrm{H})$. 2.80-2.03 (m. 1H), 1.37 (s. 9 H). 4a: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~d} .2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.60(\mathrm{~d}, 2 \mathrm{H} . J=9.0 \mathrm{~Hz})$. $4.40-4.34(\mathrm{~m} .1 \mathrm{H}), 4.11(\mathrm{~d}, 1 \mathrm{H} . J=10.5 \mathrm{~Hz}) .3 .89(\mathrm{~m}, \mathrm{IH})$. $3.58(\mathrm{~m}, 2 \mathrm{H}) .3 .23(\mathrm{~m} .2 \mathrm{H}) .3 .22(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}) .1 .88$ $(\mathrm{m}, 2 \mathrm{H}), 1.33-1.17(\mathrm{~m}, \mathrm{IH}) .1 .03(\mathrm{~d}, 3 \mathrm{H} . J=7.2 \mathrm{~Hz}) .0 .94(\mathrm{t}$. $3 \mathrm{H} . J=7.2 \mathrm{~Hz}) ; \mathbf{4 b}: 300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{t}$. $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.68(\mathrm{~d} .1 \mathrm{H} . J=8.1 \mathrm{~Hz}) .6 .61(\mathrm{~s} . \mathrm{IH}) .6 .54$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d} .1 \mathrm{H} . J=10.8 \mathrm{~Hz})$. $3.95(\mathrm{~m}, 1 \mathrm{H}) .3 .58(\mathrm{~m} .2 \mathrm{H}) .3 .30(\mathrm{~m}, 1 \mathrm{H}) .2 .21(\mathrm{~m} .2 \mathrm{H}) .1 .75$ $(\mathrm{m} .2 \mathrm{H}) .1 .29(\mathrm{~m} .1 \mathrm{H}) .1 .05(\mathrm{~d} .3 \mathrm{H} . J=6.9 \mathrm{~Hz}) .0 .94(\mathrm{t} .3 \mathrm{H}$. $J=7.5 \mathrm{~Hz}) .4 \mathrm{c}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32$ (d. $2 \mathrm{H} . J$ $=8.5 \mathrm{~Hz}) .6 .61(\mathrm{~d} .2 \mathrm{H} . J=8.5 \mathrm{~Hz}) .4 .42-4.34(\mathrm{~m} .2 \mathrm{H}) .3 .89-$ $3.79(\mathrm{~m} .1 \mathrm{H}) .3 .59-3.43(\mathrm{~m} .2 \mathrm{H}) .3 .27-3.18(\mathrm{~m} .1 \mathrm{H}) .2 .32-$ $2.15(\mathrm{~m}, 2 \mathrm{H}) .1 .85-1.58(\mathrm{~m} .2 \mathrm{H}), 1.25-1.12(\mathrm{~m}, 1 \mathrm{H}) .0 .98(\mathrm{~d}$. $3 \mathrm{H} . J=6.8 \mathrm{~Hz}$). 0.87 (t. $3 \mathrm{H} . J=7.4 \mathrm{~Hz}$): $\mathbf{4 d}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 7.26-7.21(\mathrm{~m} .1 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H} . J=7.5 \mathrm{~Hz})$. 6.83-6.81 (m. 2H), 4.47 (dd. $2 \mathrm{H} . J=10.5,6.9 \mathrm{~Hz}$). 4.33 (d. $1 \mathrm{H} . J=10.5 \mathrm{~Hz}) .3 .99-3.90(\mathrm{~m}, 1 \mathrm{H}) .3 .61-3.52(\mathrm{~m} .2 \mathrm{H})$. 3.29-3.20 (m. 1H). 2.38-2.20 (m. 2 H$) .1 .90-1.68(\mathrm{~m} .2 \mathrm{H})$. $1.33-1.24(\mathrm{~m}, 1 \mathrm{H}) .1 .07(\mathrm{~d}, 3 \mathrm{H} . J=6.8 \mathrm{~Hz}) .0 .95(\mathrm{t} .3 \mathrm{H} . J=$ 7.4 Hz): $4 \mathrm{e}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.10$ (d. $2 \mathrm{H} . J=$ $8.7 \mathrm{~Hz}) .6 .56(\mathrm{~d}, 2 \mathrm{H} . J=8.7 \mathrm{~Hz}) .4 .65-4.56(\mathrm{~m}, \mathrm{IH}), 4.08(\mathrm{~d}$. $1 \mathrm{H} . J=10.5 \mathrm{~Hz}) .3 .91-3.79(\mathrm{~m}, 2 \mathrm{H}) .1 .96-1.81(\mathrm{~m}, 1 \mathrm{H})$. $1.69-1.50(\mathrm{~m} .2 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 6 \mathrm{H}): 4 \mathrm{f}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.49$ (d. $2 \mathrm{H}, J=8.7 \mathrm{~Hz}$). 6.64 (d. $2 \mathrm{H} . ~ J=$ $8.7 \mathrm{~Hz}) .4 .73-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 3.88-$ $3.85(\mathrm{~m} .1 \mathrm{H}) .3 .84-3.54(\mathrm{~m} .2 \mathrm{H}) .3 .43-3.39(\mathrm{~m} .1 \mathrm{H}) .2 .37-$ $2.30(\mathrm{~m} .2 \mathrm{H}), 1.67-1.65(\mathrm{~m}, 1 \mathrm{H}) .1 .64-1.55(\mathrm{~m} .2 \mathrm{H}) .1 .02$
$(\mathrm{m}, 6 \mathrm{H}) ; \mathrm{tg}: 300 \mathrm{MHz}{ }^{\mathrm{l}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, 2 \mathrm{H} . J=$ $8.7 \mathrm{~Hz}) .6 .59(\mathrm{~d} .2 \mathrm{H} . J=8.7 \mathrm{~Hz}), 4.72-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.86-$ $3.82(1 \mathrm{H}, \mathrm{m}) .3 .68-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.42(\mathrm{~m} . \mathrm{H}) .2 .39-$ $2.33(\mathrm{~m} .2 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}) .1 .27-1.14(\mathrm{~m} .2 \mathrm{H}) .0 .95$ (m, 6 H); 4h: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.38$ (d. $2 \mathrm{H} . J=$ 8.4 Hz). 6.69 (d. $2 \mathrm{H}, J=8.4 \mathrm{~Hz}$). 4.55 (d. $1 \mathrm{H} . J=10.2 \mathrm{~Hz}$), 4.47-4.42 (m, 1H). 3.89-3.88 (m, 1H), 3.63-3.53 (m, 2H), 3.34-3.30 (m, 1H). 2.35-2.28 (m, 2H), 2.14-2.10 (m, 1 H$)$, $1.07(\mathrm{~m} .6 \mathrm{H}) ; 4 \mathrm{i}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.26-7.21$ $(\mathrm{m}, \mathrm{lH}), 6.96(\mathrm{~d}, \mathrm{lH}, J=7.5 \mathrm{~Hz}) .6 .83-6.81(\mathrm{~m} .2 \mathrm{H}) .4 .47-$ $4.37(\mathrm{~m}, 2 \mathrm{H}) .3 .96-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.55(\mathrm{~m} . \mathrm{IH}) .3 .29-$ $3.25(\mathrm{~m} .1 \mathrm{H}) \cdot 2 \cdot 27-2.09(\mathrm{~m}, 2 \mathrm{H}) .1 .10(\mathrm{~m}, 6 \mathrm{H}):+\mathrm{j}: 300 \mathrm{MHz}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, 2 \mathrm{H} . J=8.7 \mathrm{~Hz}), 7.25-7.14(\mathrm{~m}$, $1 \mathrm{H}) .4 .58(\mathrm{~d} .1 \mathrm{H}, J=9.9 \mathrm{~Hz}) .3 .62 \cdot 3.57(\mathrm{~m} .2 \mathrm{H}) .3 .20-3.12$ $(\mathrm{m}, \mathrm{IH}) .3 .02(\mathrm{~d}, 2 \mathrm{H} . J=6.9 \mathrm{~Hz}), 2.60(\mathrm{~m}, 1 \mathrm{H}) .2 .13-2.00$ (m, 2H): $4 \mathrm{k}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.22$ (m, $6 \mathrm{H}) .6 .97(\mathrm{~d} .1 \mathrm{H}, J=7.5 \mathrm{~Hz}) .6 .80-6.77(\mathrm{~m} .2 \mathrm{H}) .4 .93-4.88$ $(\mathrm{m}, \mathrm{lH}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}) .3 .71-3.62(\mathrm{~m} .2 \mathrm{H}) .3 .29-$ $3.21(\mathrm{~m}, \mathrm{lH}) .3 .12-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.85(\mathrm{~m} .1 \mathrm{H}) .2 .24-$ $2.15(\mathrm{~m}, 2 \mathrm{H}) ; 4 \mathrm{l}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, 2 \mathrm{H}$, $J=8.7 \mathrm{~Hz}) .7 .33-7.20(\mathrm{~m} .5 \mathrm{H}), 6.60(\mathrm{~d}, 2 \mathrm{H} . J=9.0 \mathrm{~Hz})$, $4.93-4.91(\mathrm{~m} . \mathrm{lH}), 4.83(\mathrm{~d} .1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.71-3.67(\mathrm{~m}$. $2 \mathrm{H}) .3 .31-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d} .2 \mathrm{H}, J=6.9 \mathrm{~Hz}) .2 .73(\mathrm{~m}$, 1H). $2.24-2.14(\mathrm{~m} .2 \mathrm{H}): 4 \mathrm{~m}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.39(\mathrm{~d}, 2 \mathrm{H} . J=8.1 \mathrm{~Hz}), 7.03$ (d. $2 \mathrm{H} . J=8.1 \mathrm{~Hz}$), $6.74(\mathrm{~d}$, $2 \mathrm{H} . J=8.1 \mathrm{~Hz}$). 6.58 (d. $2 \mathrm{H} . J=8.1 \mathrm{~Hz}$). $4.92-4.89(\mathrm{~m} .2 \mathrm{H})$, $3.69-3.35(\mathrm{~m}, 2 \mathrm{H}) .3 .33-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.01(\mathrm{~m}, 2 \mathrm{H})$, 2.96-2.90 (m. IH). 2.25-2.19 (m. 2H); 5a: $300 \mathrm{MHz}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 2 \mathrm{H})$, 4.54-4.49(m, lH). $4.34(\mathrm{~m}, \mathrm{lH}), 3.98(\mathrm{~m} .1 \mathrm{H}), 3.55-3.40$ $(\mathrm{m}, 1 \mathrm{H}), 3.15-2.74(\mathrm{~m} .2 \mathrm{H}), 2.02-1.57(\mathrm{~m} .5 \mathrm{H}), 1.28-1.22$ $(\mathrm{m}, 2 \mathrm{H}), 1.01(\mathrm{~d} .3 \mathrm{H} . J=6.6 \mathrm{~Hz}), 0.94(\mathrm{t} .3 \mathrm{H} . J=7.2 \mathrm{~Hz})$; 5b: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13-7.05(\mathrm{~m}, \mathrm{lH}) .6 .45-$ $6.34(\mathrm{~m} .3 \mathrm{H}) .4 .55-4.44(\mathrm{~m}, 2 \mathrm{H}) .4 .26(\mathrm{~d}, \mathrm{IH} . J=9.9 \mathrm{~Hz})$. 3.55-3.50 (m, lH), 3.18-2.98 (m. 2H). 2.11-1.97 (m, 1H), $1.83-1.57(\mathrm{~m} .4 \mathrm{H}), 1.26-1.15(\mathrm{~m} .2 \mathrm{H}) .1 .02(\mathrm{~d}, 3 \mathrm{H} . J=6.6$ Hz), 0.93 (t. $3 \mathrm{H} . J=7.5 \mathrm{~Hz}$): 5c: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~d}, 2 \mathrm{H} . J=6.9 \mathrm{~Hz}), 6.62(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $4.54-4.35(\mathrm{~m}, 2 \mathrm{H}) .4 .13(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.44(\mathrm{~m} .1 \mathrm{H}) .3 .22-$ $2.89(\mathrm{~m}, 2 \mathrm{H}) .2 .06-1.95(\mathrm{~m}, 1 \mathrm{H}) .1 .82-1.54(\mathrm{~m} .5 \mathrm{H}) .1 .26-$ $1.19(\mathrm{~m} .1 \mathrm{H}) .1 .01(\mathrm{~d} .3 \mathrm{H} . J=6.6 \mathrm{~Hz}) .0 .95(\mathrm{t} .3 \mathrm{H} . J=7.2$ $\mathrm{Hz}): 5 \mathrm{~d}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{t}, 1 \mathrm{H} . J=8.1$ $\mathrm{Hz}), 6.70-6.64(\mathrm{~m} .2 \mathrm{H}), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.55-3.52$ $(\mathrm{m} .1 \mathrm{H}) .4 .49$ (m. 2H). 4.22 (d. 1H. $J=9.6 \mathrm{~Hz}$). 3.53 (m. $1 \mathrm{H}) .3 .15(\mathrm{~m}, 2 \mathrm{H}) .2 .10-1.99(\mathrm{~m}, 1 \mathrm{H}) .1 .75(\mathrm{~m} .5 \mathrm{H}) .1 .24(\mathrm{~m}$. $1 \mathrm{H}) .1 .02$ (d. $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$), 0.93 (t. $3 \mathrm{H} . J=7.5 \mathrm{~Hz}$): $5 \mathrm{e}:$ $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 7.40(\mathrm{~d} .2 \mathrm{H} . J=8.6 \mathrm{~Hz}), 6.68$ (d. $2 \mathrm{H}, J=8.2 \mathrm{~Hz}$), $4.57 .4 .45(\mathrm{~m}, 3 \mathrm{H}), 3.60 .3 .49(\mathrm{~m} .1 \mathrm{H})$. 3.23-2.99 (m, 2H). 2.09-2.00 (m, 1H), 1.88-1.56 (m, 5H), $1.26-1.15(\mathrm{~m} .1 \mathrm{H}) .1 .02(\mathrm{~d} .3 \mathrm{H} . J=6.7 \mathrm{~Hz}) .0 .93(\mathrm{t} .3 \mathrm{H} . J=$ 7.4 Hz): 5f: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.29-7.23$ (m, $1 \mathrm{H}) .6 .97(\mathrm{~d} .1 \mathrm{H}, J=7.2 \mathrm{~Hz}) .6 .88-6.82(\mathrm{~m} .2 \mathrm{H}) .4 .54-4.34$ (m. 3H), 3.56-3.51 (m. 1H), 3.23-2.97 (m. 2H), 2.06-2.02 $(\mathrm{m}, 1 \mathrm{H}) .1 .83-1.51(\mathrm{~m}, 4 \mathrm{H}) .1 .30-1.17(\mathrm{~m} .2 \mathrm{H}) .1 .05(\mathrm{~d} .3 \mathrm{H}$. $J=6.9 \mathrm{~Hz}) .0 .94$ (t. $3 \mathrm{H}, ~ J=7.2 \mathrm{~Hz}$): 5g: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.59(\mathrm{~m} .2 \mathrm{H}) .4 .61-4.47$ $(\mathrm{m}, 2 \mathrm{H}) .3 .92(\mathrm{~m}, \mathrm{lH}) .3 .62-3.52(\mathrm{~m} .1 \mathrm{H}), 3.29-3.06(\mathrm{~m}$.
$2 \mathrm{H}), 2.06-2.02(\mathrm{~m} . \mathrm{H}), 1.90-1.75(\mathrm{~m} .4 \mathrm{H}), 1.60-1.56(\mathrm{~m}$. $2 \mathrm{H}), 1.04-0.95(\mathrm{~m}, 6 \mathrm{H}) ; \mathbf{5 h}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.14-7.06 (m. IH), 6.45-6.29 (m. 3 H). 4.71-4.49 (m. 2 H). $4.21(\mathrm{~d}, \mathrm{lH}, J=10.5 \mathrm{~Hz}) .3 .62-3.57(\mathrm{~m} .1 \mathrm{H}) .3 .26-3.09(\mathrm{~m}$. $2 \mathrm{H}), 2.09-2.00(\mathrm{~m} . \mathrm{H}), 1.90-1.82(\mathrm{~m} .3 \mathrm{H}), 1.62-1.58(\mathrm{~m}$. 3 H), $1.04-0.95$ (m. 6 H): $5 \mathbf{5}: 300 \mathrm{MHz}{ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.12 (d. $2 \mathrm{H}, J=8.7 \mathrm{~Hz}) .6 .58$ (d, $2 \mathrm{H} . J=8.4 \mathrm{~Hz}) .4 .67-4.48$ $(\mathrm{m}, 2 \mathrm{H}) .4 .08(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, \mathrm{lH}) .3 .26-3.11(\mathrm{~m}$. $2 \mathrm{H}), 2.12-1.98(\mathrm{~m} .1 \mathrm{H}), 1.90-1.81(\mathrm{~m} .3 \mathrm{H}), 1.61-1.57(\mathrm{~m}$. $3 \mathrm{H}), 1.03-0.98(\mathrm{~m}, 3 \mathrm{H}), 5 \mathrm{j}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.08 (t. $1 \mathrm{H} . J=7.8 \mathrm{~Hz}) .6 .70(\mathrm{~d} .1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.58(\mathrm{~s}$. $1 \mathrm{H}), 6.53(\mathrm{~d} .1 \mathrm{H} . J=8.1 \mathrm{~Hz}), 4.70-4.59(\mathrm{~m} .1 \mathrm{H}), 4.51(\mathrm{~d}$. $1 \mathrm{H} . J=11.7 \mathrm{~Hz}) .4 .1(\mathrm{~m} .1 \mathrm{H}), 3.61(\mathrm{~m} .1 \mathrm{H}), 3.18(\mathrm{~m} .2 \mathrm{H})$. $2.13-2.01(\mathrm{~m} . \mathrm{IH}) .1 .89(\mathrm{~m} .3 \mathrm{H}) .1 .67-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.04-$ $0.98(\mathrm{~m}, 6 \mathrm{H}) ; 5 \mathrm{k}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, 2 \mathrm{H}$. $J=8.7 \mathrm{~Hz}) .6 .69-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.66(\mathrm{~m} .1 \mathrm{H}), 4.54-4.44$ $(\mathrm{m}, 2 \mathrm{H}) .3 .62-3.58(\mathrm{~m}, \mathrm{IH}) .3 .26-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.00$ $(\mathrm{m}, \mathrm{lH}), 1.92-1.80(\mathrm{~m}, 3 \mathrm{H}) .1 .68-161(\mathrm{~m}, 3 \mathrm{H}), 1.03-0.97(\mathrm{~m}$. 6 H): 5l: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.29-7.23(\mathrm{~m} .1 \mathrm{H})$, 6.99-6.93 (d, IH. $J=7.8 \mathrm{~Hz}) 6.82-6.76(\mathrm{~m} .2 \mathrm{H}) .4 .77-4.67$ $(\mathrm{m}, \mathrm{lH}) .4 .53-4.49(\mathrm{~d} . \mathrm{IH} . J=11.7 \mathrm{~Hz}) .429(\mathrm{~m}, \mathrm{lH}), 3.64-$ $3.59(\mathrm{~m} .1 \mathrm{H}) .3 .29-3.09(\mathrm{~m} .2 \mathrm{H}) .2 .09-2.05(\mathrm{~m}, \mathrm{lH}) .1 .94-$ $1.83(\mathrm{~m} .3 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 3 \mathrm{H}) .1 .05-0.96(\mathrm{~m}, 6 \mathrm{H}) ; 5 \mathrm{~m}:$ $300 \mathrm{MHz}{ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91-6.85$ (m. 2 H$), 6.68-6.64$ $(\mathrm{m}, 2 \mathrm{H}), 4.53-4.49(\mathrm{~m}, 1 \mathrm{H}), 430(\mathrm{~m}, 1 \mathrm{H}) .4 .04(\mathrm{~m}, 1 \mathrm{H})$. $3.47-3.43(\mathrm{~m} .1 \mathrm{H}), 3.15-2.80(\mathrm{~m} .2 \mathrm{H}) .2 .07-2.00(\mathrm{~m} .1 \mathrm{H})$. $1.80-1.68$ (m. 2 H). 1.57-1.45 (m. 2H), 1.07-0.99 (m. 6H): 5n: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13-7.05(\mathrm{~m} . \mathrm{IH}) .6 .46-$ $6.35(\mathrm{~m} .3 \mathrm{H}) .4 .54-4.31(\mathrm{~m}, 3 \mathrm{H}) .3 .56-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.18-$ $3.01(\mathrm{~m} .2 \mathrm{H}) .2 .13-1.98(\mathrm{~m}, 2 \mathrm{H}) .1 .83-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.54(\mathrm{~m}, 1 \mathrm{H}) .1 .06(\mathrm{~d} .3 \mathrm{H} . J=6.9 \mathrm{~Hz}), 1.0 \mathrm{~L}(\mathrm{~d}, 3 \mathrm{H} . J=6.9$ $\mathrm{Hz}): 50: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, 2 \mathrm{H} . J=9.0$ $\mathrm{Hz}), 6.63(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 4.53-4.48(\mathrm{~mm}, 1 \mathrm{H}), 4.39-4.32$ $(\mathrm{m}, \mathrm{IH}) .4 .20-4.19(\mathrm{~m}, \mathrm{IH}) .3 .60-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.27-2.92$ (m, 2H), 2.11-2.01 (m. 1H). 1.83-1.72 (m, 2H). 1.59-1.51 $(\mathrm{m}, 2 \mathrm{H}) .1 .06(\mathrm{~d}, 3 \mathrm{H} . J=6.9 \mathrm{~Hz}), 1.01(\mathrm{~d}, 3 \mathrm{H} . J=6.6 \mathrm{~Hz})$: $5 \mathrm{p}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$. $6.70-6.50(\mathrm{~m} .2 \mathrm{H}) .6 .56(\mathrm{~d} .1 \mathrm{H} . J=8.1 \mathrm{~Hz}) .4 .54-4.40(\mathrm{~m}$. $2 \mathrm{H}) .4 .29(\mathrm{~d} .1 \mathrm{H} . J=10.2 \mathrm{~Hz}) .3 .54(\mathrm{~m} .1 \mathrm{H}) .3 .18-3.03(\mathrm{~m}$. $2 \mathrm{H}) .2 .12-2.02(\mathrm{~m}, 2 \mathrm{H}) .1 .83-1.74(\mathrm{~m}, 2 \mathrm{H}) .1 .65(\mathrm{~m}, 1 \mathrm{H})$. 1.06 (d. $3 \mathrm{H} . J=6.6 \mathrm{~Hz}$). 1.01 (d. $3 \mathrm{H} . J=6.9 \mathrm{~Hz}$): $5 \mathrm{q}: 300$ $\mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d} .2 \mathrm{H} . J=8.4 \mathrm{~Hz}), 6.66(\mathrm{~d}$. $2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.468(\mathrm{~m}, 3 \mathrm{H}), 3.57-3.45(\mathrm{~m}, \mathrm{IH}) .3 .17-2.95$ (m. 2H). 2.10-1.97 (m, 2H). 1.86-1.69 (m. 2H). 1.52 (m. $1 \mathrm{H}) .1 .00(\mathrm{~d} .3 \mathrm{H} . J=6.6 \mathrm{~Hz}) .0 .93$ (d. $3 \mathrm{H} . J=6.6 \mathrm{~Hz}$): $5 \mathrm{r}:$ $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{t}, \mathrm{IH} . J=7.8 \mathrm{~Hz}) .6 .96$ $(\mathrm{d}, 1 \mathrm{H} . J=7.5 \mathrm{~Hz}), 6.85-6.83(\mathrm{~m} .2 \mathrm{H}) .4 .53-4.42(\mathrm{~m}, 3 \mathrm{H})$, 3.56-3.52 (m. 1H). 3.18-3.01 (m. 2H). 2.17-1.95 (m. 2H). $1.83-1.73(\mathrm{~m}, 2 \mathrm{H}) .1 .56-1.52(\mathrm{~m}, 1 \mathrm{H}) .1 .09$ (d. $3 \mathrm{H} . J=6.9$ Hz). 1.02 (d. $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$): $5 \mathrm{~s}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.22(\mathrm{~m} .5 \mathrm{H}) .6 .93-6.83(\mathrm{~m} .2 \mathrm{H}) .6 .70-6.66$ $(\mathrm{m}, \mathrm{IH}) .6 .57-6.54(\mathrm{~m}, \mathrm{IH}) .4 .90-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.42$ (m. 1H). $4.12(\mathrm{~d} .1 \mathrm{H} . J=6.9 \mathrm{~Hz}), 3.16-2.94(\mathrm{~m} .5 \mathrm{H}) .1 .84-$ $1.67(\mathrm{~m}, 2 \mathrm{H}) .1 .58-1.41$ (m. 2H): 5t: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.24(\mathrm{~m} .5 \mathrm{H}) .7 .16-7.06(\mathrm{~m} . \mathrm{IH}) .6 .50-6.23$
$(\mathrm{m}, 3 \mathrm{H}), 4.94-4.82(\mathrm{~m} .1 \mathrm{H}), 4.53-4.33(\mathrm{~m} .2 \mathrm{H}), 3.19-2.95$ ($\mathrm{m}, 4 \mathrm{H}$). $1.86-1.33(\mathrm{~m}, 5 \mathrm{H}) ; 5 \mathrm{u}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.23(\mathrm{~m} .5 \mathrm{H}), 7.13-7.01(\mathrm{~m} .1 \mathrm{H}), 6.73-6.44(\mathrm{~m}, 3 \mathrm{H})$, $4.90-4.86(\mathrm{~m}, \mathrm{lH}) .4 .49-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.25-2.91(\mathrm{~m}, 4 \mathrm{H})$, $2.08-1.33(\mathrm{~m}, 5 \mathrm{H}) ; 5 \mathrm{v}: 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.44-$ $7.18(\mathrm{~m} .7 \mathrm{H}), 6.72(\mathrm{~d}, 1 \mathrm{H} . J=8.4 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 4.99-4.92(\mathrm{~m}, \mathrm{HH}), 4.68-4.46(\mathrm{~m} .2 \mathrm{H}) .3 .22-2.93(\mathrm{~m}$, 4H). 2.17-2.1 (m, 1H), 1.88-1.46 (m. 4H); 5w: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.33-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.00-6.85(\mathrm{~m}, 2 \mathrm{H})$, 6.74-6.69 (m, lH), 4.97-4.91 (m, lH), 4.54-4.47 (m. 2H), $3.25-2.95(\mathrm{~m}, 4 \mathrm{H}) .1 .88-1.47(\mathrm{~m} .5 \mathrm{H})$.

Acknowledgments. We thank the Center for Biological Modulators and Korea Research Institute of Chemical Teclnology for generous financial support. We also thank Dr. Seong Hwan Kim for helpful discussions.

References and Notes

1. (a) McGrath. M. E. Amu. Rev: Bioptrs. Biomol. Struct. 1999. 28. 181. (b) Turk. V.: Turk. B.: Turk. D. EAIBO J. 2001. 20.4629. (c) Leung-Toung. R.: Li. W.: Tam. T. F.: Karimian. K. Cmf: Med. Chem. 2002. 9. 979. (d) Lecaille. F.: Kaleta, J.: Brömme, D. Chem. Rev: 2002. 102. 4459
2. (a) Turk. B.; Turk, D.: Turk. V. Biochim. Biopbys Acta 2000. 1 $477(1-2$). 98 . (b) Buhling. F.: Fengler. A.: Brandt. W.: Welte. T.: Atsorge. S.: Nagler. D. K. Act: Exp) Med. Biol. 2000. 477. 241.
3. (a) Brömme. D.: Okamoto. K. Biol. Chem. Hoppe-Sevter 1995. 376. 379. (b) Drake, F. H.: Dodds. R. A.; James. I. A.; Connor, J. R.; Debouck. C.; Richardson. S.; Lee-Rykaczewski. L.; Coleman. L.; Riemann. D.: Barthlow. R.; Hastings. G.; Gowen. M. d. Biol. Chen. 1996. 271. 12511. (c) Gelb. B. D.: Shi. G.-P: Chapman. H. A:: Desnick. R. T. Science 1996. 273. 1236. (d) Sattig. P:: Hunziker. E.: Wehmeyer. O.: Jones. S.: Boyde. A.: Rommerskirch. W.: Moritz, J. D.; Schu, P.: von Figura. K. Proc. Matl. Acad. Sci. U.S.A. 1998, 95, 13453.
4. (a) Boros, E. E.; Bouvier. F.; Randhawa. S:; Rabinowitz. M. H. J. Heterocycl. Chem. 2001. 38. 613. (b) Aht1. J. H.: Kim. T. A.: Kim. H.-M.: Kwon. H.-M.: Huh. S.-C.: Rhee. S. D.: Kim. K. R.: Yang. S.-D.: Park. S.-D.: Lee. T. M.: Kim1. S. S.: Cheon. H. G. Bioorg. Med. Chem. Lett. 2005, 15, 1337. (c) Ahn, J. H.: Shin. M. S.: Jun, M. A.: Jung. S. H.: Kang. S. K.; Kim, K. R.; Rhee, S. D.: Kang, N. S.: Kim. S. Y: Sohn, S.-K.: Kim. S. G.: Jin. M. S.; Lee, J. O.: Cheon. H. G.: Kim. S. S. Bioorg, Med Chem. Leth. 2007. 17. 2622.
5. Ma. D.: Zhang. Y.: Yao. J.: Wu. S.: Tao. F. J. An. Chem. Soc. 1998. 120. 12459.
6. In vitro enzwatic activity assay for cathepsins B. L. S. and K : The enzymatic reaction was performed in a 96 -well plate (Costar) by mixing reaction buffer (100 mM NaOAc. 2 mM EDTA. 3 mM DTT. pH 5.5). $5 / \mathrm{L}$ of $400 / \mathrm{M}$ substrate (Z-RR-PNA: biomol). 5.88 nM recombinant human cathepsin B ($1-339$ amino acid) and $5^{\circ} \%$ (viv) compound (12.5 mM DMSO stock solution used). The mixture was incubated at $30^{\circ} \mathrm{C}$ for 2 h and then its absorbance was measured at 405 mm in Benchmark plus (Bio-Rad). The substrate Z-FR-pNA (biomol) was used in assay for cathepsins L and S. and Z-GPR-AMC was used for cathepsin K. In addition. 300 mU recombinant cathepsin L (Calbiochem). 100 n M recombinant human cathepsin $\mathrm{S}(1-331$ amino acid). 20 n M recombinant human cathepsin K ($1-329$ amino acid) were used in each assay.
7. In vioo efficacy test of these in CIA (collagen induced arthritis) murine model will be discussed elsewhere. Trentham. D. E.; Townes. A. S.: Kang. A. H. J. Exp. Med 1977. 1+6. 857.

[^0]: - : No data available for this compound

