DOI QR코드

DOI QR Code

Kinetics and Mechanism of Triethylamine Catalysed Michael Addition of Benzenethiol to 1-(2-Nitrovinyl)benzene in Acetonitrile

  • Sarathi, P.A. (Research Department of Chemistry, VHN Senthikumara Nadar College) ;
  • Gnanasekaran, C. (Research Department of Chemistry, VHN Senthikumara Nadar College) ;
  • Shunmugasundaram, A. (Research Department of Chemistry, VHN Senthikumara Nadar College)
  • Published : 2008.04.20

Abstract

Nucleophilic addition reaction of benzenethiols (PhSH) to 1-(2-nitrovinyl) benzenes ($\beta$ NS) in the presence of triethylamine (TEA) has been studied in acetonitrile at 25 ${^{\circ}C}$. The rate is first order with respect to [PhSH], [TEA] and [$\beta$ NS]. The reaction is found to proceed with the formation of ion-pair between benzenethiol and TEA. A suitable mechanism with the formation of an adduct between ion-pair and substrate in a slow step followed by its rearrangement to 1,2-addition product in a fast step has been proposed and corresponding rate law derived. From the rate law, the rate constants for the interaction between ion-pair and $\beta$NS have been evaluated. Interestingly, in both para-substituted substrates and benzenethiols the rate increases with the electron-withdrawing power of the substituents. The positive sign of $\rho_x$ in benzenethiols has been explained. The magnitude of cross-interaction constant, $\rho_{xy}$ is small (0.08). The magnitude of the Hammett $\rho_x$ values is higher than that of the Bronsted, $\beta_x$ values for benzenethiols. The kinetic isotope effect, $k_H/k_D$, is found to be greater than unity. A suitable transition state with simultaneous formation of $C_\beta$ -H and $B_\alpha$ -S bonds involving the ion-pair and $\beta$NS in a single concerted step has been proposed to account for these observations.

Keywords

References

  1. Bernasconi, C. F. Tetrahedron 1989, 45, 4017 https://doi.org/10.1016/S0040-4020(01)81304-1
  2. Bernasconi, C. F.; Schuck, D. F.; Ketner, R. J.; Weiss, M.; Rappoport, Z. J. Am. Chem. Soc. 1994, 116, 11764 https://doi.org/10.1021/ja00105a017
  3. Chem, X.; Rappoport, Z. J. Org. Chem. 1998, 63, 5684 https://doi.org/10.1021/jo9804083
  4. Oh, H. K.; Kinn, I. K.; Lee, H. W.; Lee, J. J. Org. Chem. 2004, 69, 3806 https://doi.org/10.1021/jo034370s
  5. Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 101
  6. Oh, H. K.; Yang, J. H.; Hwang, Y. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 221 https://doi.org/10.5012/bkcs.2002.23.2.221
  7. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188 and 5391 https://doi.org/10.1021/jo991823d
  8. Ananthakumar, K.; Sarathi, A.; Gnanasekaran, C.; Shunmugasundaram, A. Indian J. Chem. 2003, 42B, 1943
  9. Miyata, O.; Naito, T.; Ninomiya, I. Pure and Applied Chem. 1994, 66, 2115 https://doi.org/10.1351/pac199466102115
  10. Kanimura, A.; Sasatani, H.; Hashimoto, T.; Kawai, T.; Hori, K.; Ono, N. J. Org. Chem. 1990, 55, 2437 https://doi.org/10.1021/jo00295a036
  11. Kotrusz, P.; Toma, S. Molecules 2006, 11, 197 https://doi.org/10.3390/11020197
  12. Meciarova, M.; Toma, S.; Kotrusz, P. Org. & Biomol. Chem. 2006, 4, 1420 https://doi.org/10.1039/b516289k
  13. Kim, T. R.; Hall, T. S.; Han, I. S. Bull. Korean Chem. Soc. 1982, 3, 162
  14. Kim, T. R.; Chung, D. I.; Pyun, S. Y. Bull. Korean Chem. Soc. 1997, 18, 374
  15. da Silva, F. M.; Jones Jr, J. J. Braz. Chem. Soc. 2001, 12, 135 https://doi.org/10.1590/S0103-50532001000200002
  16. Sarathi, P. A.; Vijayakumar, A.; Gnanasekaran, C.; Shunmugasundaram, A. J. Indian Chem. Soc. 2004, 81, 1157
  17. Berkessel, A.; Grogee, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis; Wiley-VCH: 2005; p 73
  18. Nag, S.; Datta, D. Indian J. Chem. 2007, 46A, 1263
  19. Detar, D. F.; Novak, R. W. J. Am. Chem. Soc. 1970, 92, 1361 https://doi.org/10.1021/ja00708a042
  20. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703 https://doi.org/10.1021/ja01176a030
  21. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Table 7-1
  22. Bukingham, J. Dictionary of Organic Compounds, 5th Ed.; Chapman Hall: New York, 1982
  23. Oh, H. K.; Woo, S. Y.; Shim, C. H.; Pak, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780 https://doi.org/10.1021/jo970413r
  24. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783 https://doi.org/10.1021/jo990115p
  25. Lee, H. W.; Yun, Y. S.; Lee, B. S.; Koh, H. J.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 2302
  26. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1418
  27. Varghese, R.; Kothari, S.; Banerji, K. K. J. Chem. Res. (S) 1998, 422

Cited by

  1. An expeditious, highly efficient, catalyst-free and solvent-free synthesis of nitroamines and nitrosulfides by Michael addition vol.13, pp.2, 2011, https://doi.org/10.1039/C0GC00830C
  2. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  3. Mechanistic Kinetic Modeling of Thiol–Michael Addition Photopolymerizations via Photocaged “Superbase” Generators: An Analytical Approach vol.49, pp.21, 2016, https://doi.org/10.1021/acs.macromol.6b01605
  4. Stability of strigolactone analog GR24 toward nucleophiles vol.74, pp.4, 2018, https://doi.org/10.1002/ps.4782