DOI QR코드

DOI QR Code

Synthesis of a Novel Anthraquinone Diamino-Bridged Bis(β-cyclodextrin) and Its Cooperative Binding toward Guest Molecules

  • Zhao, Yan (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Yang, Zi Ming (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Chi, Shao Ming (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Gu, Juan (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Yang, Yong Cun (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Huang, Rong (Experimental Center, Yunnan University) ;
  • Wang, Bang Jin (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Zhu, Hong You (School of Chemical Science and Technology, Yunnan University)
  • Published : 2008.05.20

Abstract

A novel anthraquinone diamino-bridged bis($\beta$ -cyclodextrin) 2 was synthesized. The inclusion complexation behaviors of the native $\beta$ -cyclodextrin 1 and the novel bis($\beta$ -cyclodextrin) 2 with guests, such as acridine red (AR), neutral red (NR), ammonium 8-anilino-1-naphthalenesulfonate (ANS), sodium 2-(p-toluidinyl) naphthalenesulfonate (TNS) and rhodamine B (RhB) were investigation by fluorescence, circular dichroism and 2D NMR spectroscopy. The spectral titrations were performed in phosphate buffer (pH 7.20) at 25 ${^{\circ}C}$ to give the complex stability constants (Ks) and Gibbs free energy changes (−${\Delta}G^0$) for the stoichiometric 1:1 inclusion complexation of host 1 and 2 with guests. The results indicated that the novel bis($\beta$ -cyclodextrin) 2 greatly enhanced the original binding affinity of the native $\beta$ -cyclodextrin 1. Typically, bis($\beta$ -cyclodextrin) 2 showed the highest binding constant towards ANS up to 34.8 times higher than that of 1. The 2D NMR spectra of bis($\beta$ -cyclodextrin) 2 with RhB and TNS were performed to confirm the binding mode. The increased binding affinity and molecular selectivity of guests by bis($\beta$ -cyclodextrin) 2 were discussed from the viewpoint of the size/shape-fit concept and multipoint recognition mechanism.

Keywords

References

  1. Szejti, J. Chem. Rev. 1998, 98, 1743-1754 https://doi.org/10.1021/cr970022c
  2. Dentuto, P. L.; Catucci, L.; Cosma, P.; Fini, P.; Agostiano, A.; D'Accolti, L.; Trevithick-Sutton, C. C.; Foote, C. S. J. Phys. Chem. B 2005, 109, 1313-1317 https://doi.org/10.1021/jp047132p
  3. Zhao, Y.;Yang, Z. M.; Li, Z. Y.; Li, B. Y.; A, F.; Bi, X. J. Chin. J. Inorg. Chem. 2006, 22, 679-684
  4. Zhao, Y.; Liu, X. Q.; Zhao, Y.; Liu, P.; Li, C. Chin. J. Anal. Chem. 2006, 34, 959-962
  5. Ali, S. M.; Asmat, F.; Koketsu, M. Bull. Korean Chem. Soc. 2006, 27, 1397-1400 https://doi.org/10.5012/bkcs.2006.27.9.1397
  6. Michels, J. J.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2002, 124, 2056-2064 https://doi.org/10.1021/ja017025y
  7. De, J. M. R.; Engbersen, J. F. J.; Huskens, J.; Reinhoudt, D. N. Chem. Eur. J. 2000, 6, 4034-4040 https://doi.org/10.1002/1521-3765(20001103)6:21<4034::AID-CHEM4034>3.0.CO;2-3
  8. Liu, Y.; Yang, Y. W.; Chen, Y.; Ding, F. Bioorgan. Med. Chem. 2005, 13, 963-971 https://doi.org/10.1016/j.bmc.2004.11.042
  9. Liu, Y.; Chen, Y. Accounts Chem. Res. 2006, 39, 681-691 https://doi.org/10.1021/ar0502275
  10. Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997-2012 https://doi.org/10.1021/cr970011j
  11. Zhao, Y.; Yang, Z. M.; Zhu, H. Y.; Gu, J.; Wang, Y. F. Acta Phys.-Chim. Sin. 2007, 23, 394-398
  12. Petter, R. C.; Salek, J. S.; Sikorski, C. T.; Kumaravel, G.; Lin, F. T. J. Am. Chem. Soc. 1990, 112, 3860-3868 https://doi.org/10.1021/ja00166a021
  13. Connors, K. A. Chem. Rev. 1997, 97, 1325-1357 https://doi.org/10.1021/cr960371r
  14. Park, K. K.; Kim, Y. S.; Jung, H. K.; Song, H. E.; Park, J. W. Bull. Korean Chem. Soc. 2000, 21, 1119-1124 https://doi.org/10.1007/BF02719483
  15. Kajtar, M.; Horvath-Toro, C.; Kuthi, E.; Szejtli, J. Acta Chim. Acad. Sci. Hung. 1982, 110, 327-355
  16. Harata, K.; Uedaira, H. Bull. Chem. Soc. Jpn. 1975, 48, 375-378 https://doi.org/10.1246/bcsj.48.375
  17. Fraiji, E. K.; Cregan, T. R.; Werner, T. C. Appl. Spectrosc. 1994, 48, 79-84 https://doi.org/10.1366/0003702944027624

Cited by

  1. Spectrophotometric study of the selective binding behavior of aliphatic oligopeptides by bridged bis(β-cyclodextrin) linked by a 4,4′-diaminodiphenyl disulfide tether vol.88, pp.12, 2010, https://doi.org/10.1139/V10-148
  2. Synthesis of Novel Bis(β-cyclodextrin)s Linked with Glycol and Their Inclusion Complexation with Organic Dyes vol.93, pp.6, 2010, https://doi.org/10.1002/hlca.200900345
  3. Selective binding behavior of nonaromatic oligopeptides by aromatic diamino-bridged bis(β-cyclodextrin) vol.140, pp.11, 2009, https://doi.org/10.1007/s00706-009-0180-0
  4. Molecular recognition of aliphatic oligopeptides by aromatic diamine-bridged bis(β-cyclodextrin) vol.35, pp.5, 2009, https://doi.org/10.1007/s11164-009-0064-2
  5. Fluorescence Sensing and Selective Binding of a Novel 4,4′-Sulfonyldianiline-Bridged Bis(β-cyclodextrin) for Bile Salts vol.93, pp.5, 2010, https://doi.org/10.1002/hlca.200900327
  6. Aromatic Diamino-bridged Bis(β-cyclodextrin) as Fluorescent Sensor for the Molecular Recognition of Bile Salts vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2119
  7. Aryl Azide-Based Photografting of β-Cyclodextrin onto Cellulose Diacetate Fibers vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1851
  8. Molecular selective binding of aliphatic oligopeptides by bridged bis(β-cyclodextrin)s with aromatic diamine linkers vol.930, pp.1, 2008, https://doi.org/10.1016/j.molstruc.2009.04.040
  9. pH-sensitive nanocarriers for Ganoderma applanatum polysaccharide release via host-guest interactions vol.53, pp.11, 2018, https://doi.org/10.1007/s10853-018-2091-0