DOI QR코드

DOI QR Code

Aqueous Solubility Enhancement of Some Flavones by Complexation with Cyclodextrins

  • Kim, Hyun-Myung (Department of Bioscience Biotechnology and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Hyun-Won (Department of Biochemistry and Institute of Basic Medical Sciences and Medical Engineering Institute, Yonsei University, Wonju College of Medicine) ;
  • Jung, Seun-Ho (Department of Bioscience Biotechnology and Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2008.03.20

Abstract

The inclusion complexes of cyclodextrins (CDs) with flavones in aqueous solution were investigated by phase solubility measurements. The effect of b -cyclodextrin (b -CD), heptakis (2,6-di-O-methyl) b -cyclodextrin (DM-b -CD) and 2-hydroxypropyl-b -cyclodextrin (HP-b -CD) on the aqueous solubility of three flavones, namely, chrysin, apigenin and luteolin was investigated, respectively. Solubility enhancements of all flavones obtained with three CDs followed the rank order: HP-b -CD > DM-b -CD > b -CD, and besides, CDs show higher stability constant on luteolin than that on others flavones. 1H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling was used to help establish the model of interaction of the CDs with luteolin. NMR spectroscopic analysis suggested that A-C ring, and part of the B ring of luteolin display favorable interaction with the CDs, which was also confirmed by docking studies based on the molecular simulation. The observed augmentation of solubility of luteolin by three CDs was explained by the difference of electrostatic interaction of each complex, especially hydrogen bonding.

Keywords

References

  1. Havsteen, B. H. Pharmacol. Therapeut. 2002, 96, 67 https://doi.org/10.1016/S0163-7258(02)00298-X
  2. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic Biol. Med. 1996, 20, 933 https://doi.org/10.1016/0891-5849(95)02227-9
  3. Kim, H.; Jeong, K.; Jung, S. Bull. Korean Chem. Soc. 2006, 27, 325 https://doi.org/10.5012/bkcs.2006.27.2.325
  4. Lin, J. K.; Tsai, S. H.; Lin, S. Y. Drug. Future 2001, 26, 145 https://doi.org/10.1358/dof.2001.026.02.858703
  5. Birt, D. F.; Hendrich, S.; Wang, W. Pharmacol. Ther. 2001, 90, 157 https://doi.org/10.1016/S0163-7258(01)00137-1
  6. Bae, E. A.; Han, M. J.; Lee, M.; Kim, D. H. Biol. Pharm. Bull. 2000, 12, 1122
  7. Saenger, W. Angew. Chem. Int. Ed. Engl. 1980, 19, 344 https://doi.org/10.1002/anie.198003441
  8. Ali, S. M.; Asmat, F.; Koketsu, M. Bull. Korean Chem. Soc. 2006, 27, 1397 https://doi.org/10.5012/bkcs.2006.27.9.1397
  9. Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T. Chem. Rev. 1998, 98, 1977 https://doi.org/10.1021/cr970012b
  10. Higuchi, T.; Connors, K. A. Adv. Anal. Chem. Instr. 1965, 4, 117
  11. Mura, P.; Bettinetii, G.; Melani, F.; Manderioli, A. Eur. J. Pharm. Sci. 1995, 3, 347 https://doi.org/10.1016/0928-0987(95)00025-X
  12. Hyunmyung, K.; Karpjoo, J.; Hyungwo, P.; Seunho, J. J. Incl. Phenom. Macrocycl. Chem. 2006, 27, 281
  13. Choi, Y.; Park, S.; Jeong, K.; Jung, S. Bull. Korean Chem. Soc. 2007, 28, 1811 https://doi.org/10.5012/bkcs.2007.28.10.1811
  14. Davis, M. E.; Brewster, M. E. Nat. Rev. Drug Disc. 2004, 3, 1023 https://doi.org/10.1038/nrd1576
  15. Schneider, H.-J.; Hacket, F.; Rudiger, V.; Ikeda, H. Chem. Rev. 1998, 98, 1755 https://doi.org/10.1021/cr970019t
  16. Aree, T.; Chaichit, N. Carbohydr. Res. 2002, 337, 2487 https://doi.org/10.1016/S0008-6215(02)00335-X
  17. Garcia-Rio, L.; Herves, P.; Leis, J. R.; Mejuto, J. C.; Perez-Juste, J.; Rodriquez-Dafonte, P. Org. Biomol. Chem. 2006, 4, 1038 https://doi.org/10.1039/b513214b
  18. Zheng, Y.; Haworth, I. S.; Zuo, Z.; Chow, M. S. S.; Chow, A. H. L. J. Pharm. Sci. 2005, 94, 1079 https://doi.org/10.1002/jps.20325
  19. Junquera, E.; Ruiz, D.; Aicart, E. J. Colloid Interface Sci. 1999, 216, 154 https://doi.org/10.1006/jcis.1999.6290
  20. Matsui, T.; Iwasaki, H.; Matsumoto, K.; Osajima, Y. Biosci. Biotech. Biochem. 1994, 58, 1102 https://doi.org/10.1271/bbb.58.1102

Cited by

  1. Interaction of Curculigosides and Their β-Cyclodextrin Complexes with Bovine Serum Albumin: A Fluorescence Spectroscopic Study vol.40, pp.10, 2011, https://doi.org/10.1007/s10953-011-9750-y
  2. Synthesis of 7-O-(2-Amino)ethyl Flavones and Their Antioxidant Activities vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1773
  3. Improvement of dissolution behavior of poorly water soluble drugs by biodegradable polymeric submicron carriers containing sparingly methylated β-cyclodextrin vol.24, pp.4, 2013, https://doi.org/10.1007/s10856-013-4866-9
  4. Solubility of Chrysin in Ethanol and Water Mixtures vol.59, pp.7, 2014, https://doi.org/10.1021/je5001654
  5. Characterization of the Supermolecular Structure of Polydatin/6-O-α-Maltosyl-β-cyclodextrin Inclusion Complex vol.80, pp.6, 2015, https://doi.org/10.1111/1750-3841.12845
  6. Antiatherogenic Roles of Dietary Flavonoids Chrysin, Quercetin, and Luteolin vol.68, pp.1, 2016, https://doi.org/10.1097/FJC.0000000000000380
  7. Host–Guest Inclusion System of Luteolin with Polyamine-β-cyclodextrin: Preparation, Characterisation, Anti-oxidant and Anti-cancer Activity vol.69, pp.2, 2016, https://doi.org/10.1071/CH15194
  8. Development and In Vitro Evaluation of an Innovative “Dietary Flavonoid Supplement” on Osteoarthritis Process vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/7503240
  9. Effects of inclusion of chrysin in cucurbit[8]uril on its stability, solubility and antioxidant potential vol.33, pp.5, 2017, https://doi.org/10.1007/s40242-017-7096-8
  10. Solubility and dissolution rate improvement of the inclusion complex of apigenin with 2-hydroxypropyl-β-cyclodextrin prepared using the liquid antisolvent precipitation and solvent removal combination methods vol.43, pp.8, 2017, https://doi.org/10.1080/03639045.2017.1318900
  11. SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand vol.7, pp.1, 2017, https://doi.org/10.3390/nano7010008
  12. Supramolecular Encapsulation of Pulegone from Oriental Herb, Schizonepeta tenuifolia Briquet by β- and γ-Cyclodextrins vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1579
  13. Novel Acetylated Linear Periplasmic Glucans Isolated from Pseudomonas syringae vol.30, pp.10, 2008, https://doi.org/10.5012/bkcs.2009.30.10.2433
  14. Molecular Modeling Studies on the Chiral Separation of (±)-Catechins by Mono-succinyl-β-cyclodextrin vol.30, pp.6, 2008, https://doi.org/10.5012/bkcs.2009.30.6.1373
  15. Spectroscopic characterization of the inclusion complexes of luteolin with native and derivatized β-cyclodextrin vol.18, pp.14, 2008, https://doi.org/10.1016/j.bmc.2010.05.079
  16. Inclusion of chrysin in β-cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: A spectroscopic and molecular modeling approach vol.977, pp.1, 2010, https://doi.org/10.1016/j.molstruc.2010.05.030
  17. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin vol.8, pp.None, 2008, https://doi.org/10.2147/ijn.s45062
  18. Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations vol.56, pp.12, 2008, https://doi.org/10.1080/10408398.2013.809513
  19. Inclusion complex of chrysin with sulfobutyl ether-β-cyclodextrin (Captisol®): Preparation, characterization, molecular modelling and in vitro anticancer activity vol.1128, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2016.09.025
  20. Mono-6-Deoxy-6-Aminopropylamino-β-Cyclodextrin on Ag-Embedded SiO2 Nanoparticle as a Selectively Capturing Ligand to Flavonoids vol.9, pp.10, 2008, https://doi.org/10.3390/nano9101349