Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism

Ik-Hwan Um, ${ }^{*}$ Se-Won Min, and Sun-Mee Chun ${ }^{\text {a }}$
Department of Chemistry and Nano Science, Ewha Homans Chwersin, Seoul 120-750, Korea. E-mail: Thumiaewhac. hr Received Mav 13, 2008

Abstract

Second-order rate constants have been determined spectrophotometrically for reactions of 2.4-dinitrophenyl 2 thiophenecarboxylate (2) with a series of alicyclic secondary amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \% \mathrm{DMSO}$ at 25.0 $\pm 0.1^{\circ} \mathrm{C}$. The Bronsted-type plot e.hibits a downward curvature, i.e.. the slope decreases from $0.7+$ to $0.3+$ as the amine basicity increases. The $\mathrm{p} K_{\mathrm{a}}$ at the center of the Bronsted curvature. defined as $\mathrm{p} K_{a}{ }^{\circ}$, has been determined to be 9.1. Comparison of the Bronsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4 -dinitropheny 12 -furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than $\mathbf{1}$. The curved Bronsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 $\rightarrow \mathbf{2}$) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the $k \Delta / k_{-1}$ ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, k, has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of $\mathbf{1}$, indicating that the $\mathrm{C}=\mathrm{O}$ bond in the thiophenecarbosylate $\mathbf{2}$ is less electrophilic than that in the furoate $\mathbf{1}$. The smaller k_{1} for the reactions of $\mathbf{2}$ is fully responsible for the fact that $\mathbf{2}$ is less reactive than 1.

Key Words : Aminolysis. Mechanism. Bronsted-type plot. Rate-determining step. Nonleaving group

Introduction

Aminolysis of carboxylic esters with a weakly basic leaving group often results in a curved Bronsted-type plot, which has been taken as evidence for a stepwise mechanism. ${ }^{1.5}$ The rate-determining step (RDS) has been reported to be dependent on the basicity of the attacking amine and the leaving group. i.e., the RDS changes from breakdown of a zwitterionic tetrahedral intenmediate ($\mathrm{T}^{=}$) to its formation as the attacking amine becomes more basic than the leaving group or the leaving group becomes less basic than the amine by 4 to $5 \mathrm{p} K_{\mathrm{a}}$ units. ${ }^{1 \cdot 5}$

The $\mathrm{p} K_{\mathrm{a}}$ at the center of the Bronsted curvature has been defined as $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$. where a change in the RDS occurs. ${ }^{67}$ An intriguing question is that whether $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ is dependent on the nature of the nonleaving group or not. Gresser and Jencks have found that the $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ for reactions of diaryl carbonates with a series of quinuclidines increases as the substituent in the nonleaving group changes from an electron-donating group (EDG) to an electron-withdrawing group (EWG). ${ }^{7}$ This has been rationalized on the basis that departure of the amine from $\mathrm{T}^{ \pm}$is favored. over that of the leaving group. as the substituent in the nonleaving group becomes a stronger EWG ${ }^{7}$ A similar result has been reported for pyridinolysis of 2.4-dinitrophenyl X-substituted benzoates. i.e., $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}=9.5$ when $\mathrm{X}=\mathrm{H}$ but $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}>9.5$ when $\mathrm{X}=4-\mathrm{Cl}, 4-\mathrm{CN}$. or $4-\mathrm{NO}_{2}$. and for aminolysis of S-2.4-dinitrophenyl X-substituted
thiobenzoates, $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{o}}$ increases from 8.5 to 8.9 and 9.9 as X is changed from $4-\mathrm{CH}_{3}$ to H and $4-\mathrm{NO}_{2}$. in turn. ${ }^{8,9}$ Thus. $\mathrm{p} K_{a}{ }^{\circ}$ has been suggested to increase upon changing the substituent in the nonleaving group from an EDG to an EWG ${ }^{6.9}$

However, we have shown that the $\mathrm{p} K_{a}{ }^{\circ}$ value is independent of the electronic nature of the substituent X in the nonleaving group for aminolysis of 2,4 -dinitrophenyl Xsubstituted benzoates ${ }^{10}$ and benzenesulfonates. ${ }^{11}$ A similar result has been found for reactions of Y-substituted phenyl X -substituted benzoates with piperidine and pyridines, i.e., the $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ remains nearly constant as the substituent X in the benzoyl moiety is progressively modified from an EWG to an $E D G^{\text {se. }}$.

We have recently performed reactions of 2,4-dinitrophenyl 2-furoate (1) with a series of alicyclic secondary amines and

Scheme 1
concluded that the reactions proceed through a stepwise mechanism with a change in the RDS as the amine becomes more basic than the leaving aryloxide or the leaving aryloxide becomes less basic than the amine by ca. $5 \mathrm{p} K_{\mathrm{a}}$ units. ${ }^{1 i d d}$ We have extended our study to aminolysis of 2,4dinitrophenyl 2-thiophenecarboxylate (2) to investigate the effect of modification of the nonleaving group from 2 -furoyl to 2-thiophenecarbonyl on reactivity and mechanism, particularly on the k_{2} / k_{-1} ratio (see Scheme 1).

Results and Discussion

Reactions of 2 with alicyclic secondary amines proceeded with quantitative liberation of 2.4 -dinitrophenoxide. The kinetic study was performed spectrophotometrically under pseudo-first-order conditions, e.g. the amine concentration was at least 20 times greater than the substrate concentration. All reactions obeyed first-order kinetics. Pseudo-first-order rate constants ($k_{\text {obsd }}$) were calculated from the equation, $\ln \left(A_{x}-A_{\mathrm{t}}\right)=-k_{\text {obsd }}+\mathrm{C}$. The plot of $k_{\text {obsd }}$ versus amine concentration was linear and passed through the origin, indicating that general base catalysis by a second amine molecule is absent and the contribution of $\mathrm{H}_{2} \mathrm{O}$ and/or HO^{-}from hydrolysis of amine to $k_{o b s d}$ is negligible. Thus. the rate equation can be given as eq. (1). The apparent second-order rate constants (k) were determined from the slope of the linear plots of $k_{\text {obsil }}$ versus amine concentration and are summarized in Table 1. It is estimated from the replicate rums that the uncertainty in the rate constants is less than $\pm 3 \%$.

$$
\begin{equation*}
\text { Rate }=k_{\mathrm{obst}}[2] . \text { where } k_{\mathrm{clssd}}=k_{\mathrm{R}}[\text { anline }] \tag{1}
\end{equation*}
$$

Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism. As shown in Table 1. the second-order rate constant k_{A} for the reactions of 2 decreases as the basicity of amines decreases, e.g. from $145 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ to 15.3 and $0.397 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ as the $\mathrm{p} K_{4}$ of the conjugate acid of amines decreases from 11.02 to 8.65 and 5.95 , in turn. A similar result is shown for the corresponding reactions of 2.4-dinitrophenyl 2 -furoate (1) although the furoate $\mathbf{1}$ is $c a .3$ times more reactive than the thiophenecarboxylate 2 .

Table 1. Summary of Second-Order Rate Constants ($k, \mathrm{v}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$) for the Reactions of 2,4-Dinitrophenyl 2-Furoate (1) and 2-Thiophenecarboyylate (2) with Alicyclic Secondary Amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}$ $120 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$

Entry	pK_{a}	$k_{\mathrm{N}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$		
		$\mathbf{1}^{a}$	$\mathbf{2}$	
1	piperidine	11.02	427	145
2	3-methylpiperidine	10.80	402	139
3	piperazine	9.85	224	68.2
4	morpholine	8.65	43.5	15.3
5	l-fornylpiperazine	7.98	12.3	4.04
6	piperazinium ion	5.95	1.47	0.397

[^0]

Figure 1. Bronsted-type plots for the reactions of 2,4 -dinitropheny1 2-Furoate (1,) and 2,4-dinitrophenyl 2-thiophenecarbosylate (2, -) with alicyclic secondary amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The identity of points is given in Table 1 . The plots are statistically conected using p and q. $^{\text {li }}$

The effect of amine basicity on reactivity is illustrated in Figure 1 for the reactions of 1 and 2 . The Bronsted-type plots are curved donnwardly, i.e, as the amine basicity increases, the slope decreases from 0.74 to 0.34 for the reactions of 2 and from 0.73 to 0.33 for those of $\mathbf{1}$. The curved Bronsted-type plot obtained for the reactions of the furoate 1 has recently been interpreted as evidence for a change in the RDS of a stepwise mechanism. i.e., from breakdown of $\mathrm{T}^{ \pm}$to its formation as the amine basicity increases. ${ }^{10 \mathrm{~d}}$ The stepwise mechanism has been further supported from the contrasting Bronsted-type plots obtained for aminolysis of Y-substituted phenyl 2-furoates. i.e., the plot was linear with a β_{lg} value of 1.19 for the reactions with weakly basic morpholine but curved with decreasing β_{lg} from 1.25 to 0.28 for the reactions with strongly basic piperidine. ${ }^{12}$

The $\mathrm{p} K_{\mathrm{a}}$ at the center of the Bronsted curvature. defined as $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ where $k_{-1}=k_{3}$, is 9.1 for the reactions of $\mathbf{2}$. which is $c a$. $5 \mathrm{p} K_{4}$ units higher than the $\mathrm{p} K_{\mathrm{a}}$ of the conjugate acid of the leaving 2,4 -dinitrophenoxide. The current result is consistent with the report that a change in RDS occurs when the amine becomes more basic than the leaving group by 4 to $5 \mathrm{p} K_{4}$ units. ${ }^{1.5}$ Thus. one can suggest that the current aminolysis of 2 also proceeds through a stepwise mechanism with a change in the RDS.

To examine the above argument that the reactions of 1 and 2 proceed through the same mechanism (i.e., a stepwise mechanism with a change in the RDS). a plot of $\log k_{\mathrm{v}}$ for the reaction of 2 versus $\log k_{\mathrm{h}}$ for the reaction of 1 has been constructed in Figure 2. One might expect a linear plot if the reactions of $\mathbf{1}$ and $\mathbf{2}$ proceed through a common mechanism.

Figure 2. Plot of $\log k$ for reactions of 1 versus $\log k$ for the reactions of $\mathbf{2}$ in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$. the identity of pounts is given in lable 1 .

In fact. Figure 2 exhibits an excellent linearity, indicating that their mechanism is the same. The slope of 1.03 for the linear plot is consistent with the fact that the reactions of 2 exhibit slightly larger slope in the Bronsted-type plot than those of $\mathbf{1}$. Thus. one can conclude that the current reactions proceed through a stepwise mechanism with a change in the RDS. Accordingly, the apparent second-order rate constant k_{N} can be expressed as eq. (2)

$$
\begin{equation*}
k_{1}=k_{1} k_{2} /\left(k_{-1}+k_{2}\right) \tag{2}
\end{equation*}
$$

Dissection of k_{N} into Microscopic Rate Constants. The nonlinear Bronsted-type plot in Figure I has been analyzed using a semiempirical equation (eq. 3). ${ }^{7,13}$ where β_{1} and β = represent the slope of the Bronsted-type plot in Figure I for the reaction with strongly and weakly basic amines. respectively. The $k_{\mathrm{N}}{ }^{\circ}$ refers to the k_{N} at $\mathrm{p} K_{\mathrm{a}}^{0}$ in which $k_{-1}=k_{\mathrm{s}}$. The parameters detemined for the reactions of 2 are as follows: $\log h^{0}{ }^{0}=1.20 . \mathrm{p} K_{\mathrm{a}}{ }^{0}=9.1 . \beta_{1}=0.34$ and $\beta_{2}=0.74$. Therefore, one can suggest that the RDS for the reaction of 2 changes from the k step to the k_{1} process as the amine basicity increases on the basis of the magnitude of β_{1} and β_{2} values.

$$
\begin{align*}
& \log \left(k_{\mathrm{N}} / k_{\mathrm{y}}^{\circ}\right)=\beta_{\mathrm{z}}\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{a}}^{\circ}\right)-\log (1+\alpha) / 2 \\
& \text { where } \log \alpha=\left(\beta_{z}-\beta_{\mathrm{l}}\right)\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{a}}^{\circ}\right) \tag{3}
\end{align*}
$$

The k_{y} values for the reactions of $\mathbf{2}$ have been dissected into their microscopic rate constants to shed more light on the reaction mechanism. The k_{y} / k_{-1} ratios associated with the reactions of 2 have been determined using eqs. (4)-(9). Eq. (2) can be simplified to eq. (4) or (5). Then. β_{1} and β_{2} can be expressed as eqs. (6) and (7). respectively.

$$
\begin{align*}
& k_{1}=k_{1} k_{2} / k_{-1} \text {, when } k_{2} \ll k_{-1} \tag{4}\\
& \text { or } k_{N}=k_{1} \text {, when } k_{2} \gg k_{-1} \tag{5}
\end{align*}
$$

Table 2. Summary Microscopic Rate Constants k_{1} and k_{2} / k_{-1} Ratios for the Reactions of $\mathbf{1}$ and $\mathbf{2}$ with Alicyclic Secondary Ammes in 80 $\mathrm{mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \% \mathrm{DMSO}$ at $25.0 \pm 0.1^{\circ} \mathrm{C}$

Entry	p_{a}	$k_{1} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$		k_{2} / k_{-1}	
		$\mathbf{1}^{\sigma}$	$\mathbf{2}$	$\mathbf{1}^{a}$	$\mathbf{2}$
1 piperidine	11.02	482	164	7.73	7.73
2 3-methylpiperidine	10.80	466	161	632	6.32
3 piperazine	9.85	336	$\mathbf{1 0 2}$	260	200
4 morpholine	8.65	934	32.9	0.872	0872
5 1-formy lpiperazine	7.98	38.5	12.6	0.470	0.470
6 piperazinium ion	595	168	4.55	0.096	0.996

${ }^{a}$ Data for the reactions of 1 taken from ref. 10 d .

$$
\begin{align*}
\beta_{1} & =\mathrm{d}\left(\log k_{1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \tag{6}\\
\beta_{2} & =\mathrm{d}\left(\log k_{1} k_{2} / k_{-1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \\
& =\beta_{1}+\mathrm{d}\left(\log k_{2} / k_{-1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \tag{7}
\end{align*}
$$

Eq. (7) can be rearranged as eq. (8). Integral of eq. (8) from $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ results in eq. (9). Since $k_{2}=k_{-1}$ at $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$, the tenm $\left(\log k_{2} / k_{-1}\right)_{p K^{\prime} a}{ }^{\circ}$ is zero. Therefore. one can calculate the k_{-} / k_{-1} ratios for the reactions of 2 from eq. (9) using $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}=9.1 . \beta_{1}$ $=0.34$ and $\beta_{2}=0.74$.

$$
\begin{align*}
& \beta_{2}-\beta_{1}=\mathrm{d}\left(\log k_{2} / k_{-1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \tag{8}\\
& \left(\log k_{2} / k_{-1}\right)_{\mathrm{pKa}}=\left(\beta_{2}-\beta_{1}\right)\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{a}}{ }^{\circ}\right) \tag{9}
\end{align*}
$$

The k_{1} values have been determined from eq. (10) using the k_{N} values in Table 1 and the k_{7} / k_{-1} ratios detemined above. The k_{2} / k_{-1} ratios and k_{1} values determined are summarized in Table 2.

$$
\begin{equation*}
k_{\mathrm{y}}=k_{1} k_{2} /\left(k_{-1}+k_{2}\right)=k_{1} /\left(k_{-1} / k_{2}+1\right) \tag{10}
\end{equation*}
$$

Effect of Nonleaving Group on Microscopic Rate Constants. It has been reported that the basicity of amines does not influence k_{2} since the push provided by aminium moiety of $\mathrm{T}^{ \pm}$is absent. ${ }^{7.14}$ On the other hand. k_{-1} would increase with decreasing the amine basicity. Thus. one can expect that the $k y / k_{-1}$ ratio decreases as the amine basicity decreases. In fact, as shown in Table 2, the k_{2} / k_{-1} ratio decreases as the amine basicity decreases for the reactions of 1 and 2.

Thiophene- 2 -carboxylic acid is known to be a weaker acid than 2 -furoic acid. ${ }^{15}$ Accordingly. one might expect the k_{2} / k_{-1} ratio would be larger for the reaction of 2 than for the corresponding reaction of 1 , if an acid strengthening substituent in the nonleaving group decreases the k_{2} / k_{-1} ratio as suggested by Gresser and Jencks ${ }^{7}$ and by Castro et al.$^{8.9}$ However. as shown in Table 2, the k_{2} / k_{-1} ratio for the reaction of 2 is exactly the same as that for the corresponding reaction of 1 . indicating that modification of the nonleaving group from furoyl to thiophenecarbonyl does not affect the k_{2} / k_{-1} ratio. The current result is consistent with our previous proposal that the k_{y} / k_{-1} ratio is independent of the electronic nature of the substituent in the nonleaving group of 2.4dinitrophenyl X-substituted benzoates ($\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}-\mathrm{OC}_{6} \mathrm{H}_{3}-$ $\left.\left(\mathrm{NO}_{2}\right)_{2}\right)$ and benzenesulfonates ($\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}-\mathrm{OC}_{6} \mathrm{H}_{3}-$ $\left.\left(\mathrm{NO}_{2}\right)_{2}\right) .{ }^{10.11}$ We have proposed that an EWG in the non-

Figure 3. Bronsted-type plots for k_{1} for the reactions of $1(0)$ and 2 (-) with alicyclic secondary amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The identity of points is given in Table 2 .
leaving group decreases both k_{2} and k_{-1}. while an EDG increases them, since the leaving aryloxide and amine depart from $\mathrm{T}=$ with the bonding electron pair. This argument can account for the result that the reactions of $\mathbf{1}$ and $\mathbf{2}$ result in the same k_{-} / k_{-1} ratio. ${ }^{\text {[0. } 11}$

As mentioned in the previous section, k_{N} for the reaction of $\mathbf{2}$ is smaller than that of $\mathbf{1}$ for a given amine. Since as shown in eq. (10), i.e., $k_{\mathrm{v}}=k_{1} k_{2} /\left(k_{-1}+k_{2}\right)$ or $k_{\mathrm{y}}=k_{1} /\left(k_{-1} / k_{\mathrm{z}}+\right.$ 1) in the current aminolysis. the magnitude of k_{A} for the reactions of 1 and 2 should be dependent on k_{1} and/or the k_{-} / k_{-1} ratio. Table 2 shows that the k_{2} / k_{-1} ratio is the same for the reactions of $\mathbf{1}$ and 2 , while k_{1} is larger for the reactions of 1 than for the corresponding reactions of 2 . One might expect that the replacement of the O atom in the furoyl ring by a less electronegative S atom causes a decrease in the k_{1} value by decreasing the electrophilicity of 2 . Thus. one can suggest that the smaller k_{1} for the reactions of $\mathbf{2}$ is fully responsible for the fact that $\mathbf{2}$ is less reactive than $\mathbf{1}$ toward all the amines studied.
The effect of amine basicity on k_{1} is illustrated in Figure 3. It is shown that k_{1} increases linearly as the amine basicity increases for both reactions of $\mathbf{1}$ and $\mathbf{2}$. The slope of the linear plots is slightly larger for the reactions of $2\left(\beta_{1}=0.34\right)$ than for those of $\mathbf{1}\left(\beta_{1}=0.32\right)$, but the difference in β_{1} value is within the error range.

Conclusions

The current study has allowed us to conclude the following: (1) Aminolysis of 2 proceeds through a stepwise mechanism with a change in the RDS at $\mathrm{p} K_{\mathrm{a}}=9.1$. (2) Replacement of the O atom in the furoyl ring of $\mathbf{1}$ by an S atom ($\mathbf{1}$ $\rightarrow \mathbf{2}$) causes a decrease in reactivity but does not influence the reaction mechanism. (3) The reactions of 1 and 2 result
in the same k_{-} / k_{-1} ratio, indicating that modification of the nonleaving group from furoyl to thiophenecarbonyl does not affect the $k \nu k_{-1}$ ratio. (4) Reactions of 2 result in smaller k_{1} than the corresponding reactions of 1 . which is fully responsible for the fact that $\mathbf{2}$ is less reactive than $\mathbf{1}$.

Experimental Section

Materials. Compound 2 was easily prepared from the reaction of 2,4 -dinitrophenol with 2 -thiophenecarbonyl chloride under presence of triethy lamine in anhydrous ether. The purity of 2 was checked by means of the melting point $\left(110-112^{\circ} \mathrm{C}\right.$). ${ }^{1} \mathrm{H}$ NMR $\delta 9.05$ (d. $J=2.5 \mathrm{~Hz} . \mathrm{IH}$). 8.58 (dd. $J=10.0,2.5 \mathrm{~Hz} . \mathrm{lH}) .8 .06$ (dd. $J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}) .7 .80$ (dd. $J=5.0,1.3 \mathrm{~Hz} .1 \mathrm{H}) .7 .67(\mathrm{~d}, J=10.0 \mathrm{~Hz} . \mathrm{IH}) .7 .25(\mathrm{t}$. $J=5.0 \mathrm{~Hz} .1 \mathrm{H})$, and anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 44.90: \mathrm{H}$. 2.06. Found: $\mathrm{C}, 44.07$: H. 2.10. Other chemicals including the amines used were of the highest quality available. The reaction medium was $\mathrm{H}_{2} \mathrm{O}$ containing $20 \mathrm{~mol} \%$ DMSO due to low solubility of the substrate $\mathbf{2}$ in pure $\mathrm{H}_{2} \mathrm{O}$. Doubly glass distilled water was further boiled and cooled under nitrogen just before use.

Kinetics. The kinetic study was performed with a UV-vis spectrophotometer for slow reactions ($t_{12} \geq 10 \mathrm{~s}$) or with a stopped-flow spectrophotometer for fast reactions ($t_{12}<10$ s) equipped with a constant temperature circulating bath to keep the temperature in the reaction cell at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The reaction was followed by monitoring the appearance of the leaving 2,4 -dinitophenoxide ion. All the reactions were carried out under pseudo-first-order conditions in which the amine concentrations were at least 20 times greater than the substrate concentration. The amine stock solution of $c a .0 .2$ M was prepared by dissolving two equiv of free amine and one equiv of standardized HCl solution to keep the pH constant by making a self buffered solution. Five different amine concentrations were employed to determine secondorder rate constants. All the solutions were prepared freshly just before use under nitrogen and transferred by gas-tight syringes.

Product Analysis. 2.4-dinitrophenoxide was liberated quantitatively and identified as one of the products by comparison of the UV-vis spectrum at the end of reaction with the authentic sample under the experimental condition.

Acknowledgments. This work was supported by a grant from Korea Research Foundation (KRF-2005-015-C00256).

References

1. (a) Jencks. W. P. Chem. Rev: 1985. 85. 511-527. (b) Jencks. W. P. Chem. Soc. Rev. 1981, 10, $345-375$. (c) Hupe. D. J.: Jenchs, W. P. d. Am. Chem. Soc. 1977. 99. 451-464. (d) Jencks. W. P.: Gilchrist. M J. Am. Chem. Soc. 1968. 90, 2622-2637. (e) Kirsch, J. F:; Clewell. W.: Simon. A. J. Org. Chen. 1968. 33. 127-132.
2. (a) Castro. E. A.: Echevarria. G. R.: Opazo. A.: Robert. P. S.: Santos. T. G. J. Phys. Org Chem. 2008. 21. 62-67. (b) Castro. E. A.; Aliaga, M; Campodonico. P. R; Leis, J. R.: Garcia-Rio, L.; Santos, J. G. J. Phps. Org. Chem. 2006, 19. 683-688. (c) Castro, E. A.; Aliaga. M.: Gazitua. M.: Santos, J. G. Terrahedron 2006. 62.

4863-4869. (d) Castro. E. A.: Campodonico. P. R.: Contreras. R.: Fuentealba. P.: Santos. J. G.: Leis. J. R.: Garcia-Rio. L.: Saez. J. A.: Domingo. L. R. Tetrahedron 2006. 62. 2555-2562.
3. (a) Oh, H. K.; Oh, J. Y.; Sung. D. D.: Lee. I. J. Org. Chem. 2005. 70,5624-5629. (b) Oh, H. K.: Jin, Y. C.: Sung. D. D.: Lee I. Org. Biomol. (hrem. 2005, 3. 1240-1244. (c) Sung. D. D.; Koo, I. S.: Yang. K. Y.: Lee. I. Chem. Phis. Lett. 2006. 133. 426-430. (d) Jeong. K. S.: Oh. H. K. Bull. Korem Chem. Soc. 2007. 28. 25352538.
4. (a) Campodonico, P. R.; Fuentealba, P.; Castro. E. A;' Santos. J. G.: Contreras R. J. Org them 2005. 70, 1754-1760. (b) Arcelli, A.: Concilio, C.J. Org. Chem. 1996, 61, 1682-1688. (c) Maude. A. B.: Williams. A. J. Chem. Soc. Perkin Trons. 2 1995. 691-696.
5. (a) Um. I. H.: Yeon. S.: Park. H. R.: Han. H. J. Org Biomol. Chem. 2008. 6. 1618-1624. (b) Um. I. H.: Lee. J. Y.: Fuijo. M.: Tsuno. Y. Org. Biomol. Chem. 2006, +1.2979-2985. (c) Uinl I. H.: Hwang, S. J.: Baek, M. H.; Park. E. J. J. Org. Chem. 2006. 71. 9191-9197. (d) Um. I. H.: Shin. Y. H.: Ham, J. Y.: Mishima. M. J. Org. Chem. 2006. 71. 7715-7720. (e) Um. I. H.: Lee. J. Y.: Ko. S. H.: Bae. S. K. J. Org. Chem. 2006. 71. 5800-5803. (f) Um. I. H.: Kim. E. J.: Park. H. R.: Jeon. S. E. J. Org. Chem. 2006. 71. 23022306. (g) Um. I. H.; Han. H. J.: Baek, M. H.: Bae, S. Y. J. Org. Chem. 2004, 69. 6365-6370.
6. (a) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. (b) Castro. E. A.: Cubillos. M.: Aliaga. M.: Evangelisti. S.: Santos. J. G. J. Org. Chem. 2004. 69. 2411-2416. (c) Castro. E. A.: Aguayo. R.: Santos. J. G. J. Org. Chem. 2003. 68. 8157-8161. (d) Castro. E. A.: Andujar: M.: Toro, A.: Santos. I. G. J. Org. Chem. 2003, 68. 3608 3613. (e) Castro, E. A.: Aliaga. M.: Campodonico, P.; Santos. I. G. J. Org. Chem. 2002. 67. $8911-8916$.
7. Gresser. M. J.: Jencks. W. P. J. An. Chen. Soc. 1977. 99. 6970-
6980.
8. (a) Castro. E. A.: Valdivia. J. L. J. Org. Chen. 1986. $51.1668-$ 1672. (b) Castro. E. A.: Santander. C. L. J. Org. Chen. 1985. 50. 3595-3600. (c) Castro, E. A.: Steinfort. G. B. J. Chem. Soc. Perkin Trans. 2 1983. 453-457.
9. (a) Castro. E. A.; Aguayo. R; Bessolo. J; Santos, J. G. J. Org Chem. 2005. 70. 7788 -7791. (b) Castro. E. A.: Aguayo. R.: Bessolo. T.: Santos. J. G. J. Org. Chem. 2005. 70. 3530-3536. (c) Castro. E. A.: Vivanco. M.: Aguayo. R.: Aguayo. R.: Santos, T. G. J. Org. Chem. 2004, 69, 5399-5404.
10. (a) Um, I. H.: Park, Y. M.: Fuijio, M.: Mishima, M.: Tsuno. Y. J. Org. Chem. 2007, 72. 4816-4821. (b) Um, I. H.: Kim, K. H.: Park. H. R.: Fuijio. M.: Tsuno. Y. J. Org. Chem. 2004. 69. 3937-3942. (c) Um. I. H.: Teon. S. E.: Seok. T. A. Chen. Ew: J. 2006. I2. 1237-1243. (d) Um. I. H.: Churn. S. M.: Akhtar. K. Bull. Korean Chem Soc. 2007, 28. 220-224.
11. (a) Um, I. H:: Hong, J. Y.: Seok. J. A. J. Org. Chem. 2005, 70. 1438-1444. (b) Um, I. H.; Chun. S. M:- Chae. O. M.: Fujio, M; Tsunc. Y. J. Org Chem. 2004. 69. 3166-3172. (c) Um1. I. H.: Hong. J. Y.: Kim. T. T.: Chae. O. M.: Bae. S. K. J. Org. Chem. 2003. 68. 5180-5185.
12. Um. I. H.: Akhtar, K.: Park, Y. M.: Khan, S. B. Bull Korean Chem. Soc. 2007, 28. 1353-1357.
13. Castro, E. A.; Ureta, C. J. Org. Chem. 1989. 54, 2153-2159.
14. (a) Gresser. M. T.. Tencks. W. P. J. Am. Chem. Soc. 1977.99.69636970. (b) Satterthwait. A. C.: Jencks. W. P. J. Am. Chem. Soc. 1974. 96. 7018-7031.
15. Albert. A. Phpsical Ifethods in Heterocyclic Chemistyy Katritzky. A. R, Ed.; Academic Press: London, 1963; vol. 1, p 4.
16. Bell. R. P. The Proton in Chemisty, Methuen: London, U. K.. 1959. p 159.

[^0]: "Data taken from ref. 10 d .

