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A direct application of the WKB quantization to the three-dimensional Coulomb potential does not yield the 
exact eigenenergies. The three-dimensional Coulomb potential is converted to a Morse potential by using the 
point canonical transformation. Then the WKB quantization is applied to the Morse potential to find a 
relationship between the eigenenergies of the Coulomb and those of the Morse potentials. From the relationship 
the exact eigenenergis of the Coulomb potential are determined. The same method is found to be also valid for 
the three-dimensional harmonic oscillator potential. And the Langer modified WKB quantization is 
algebraically derived.
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Background

The Schrodinger equation for one-dimensional system is 
(in units of 2m = h = 1)

「d2 1-으3 + V(r) 甲n(r) = EnY„(r). (1)
dr

Here we consider a potential V(r) that varies smoothly, i.e., 
there exist two classical turning points for all bound states. 
The lowest order Wentzel-Kramers-Brillouin approximation 
(or the WKB quantization condition) for the above system 
is1,2

矿』En - V( r) dr = (n + 2)兀 n =。, 1, 2,… (2)
where rL and rR are inner (short distance) and outer (long 
distance) turning point, respectively, i.e., V(rL) = V(rR) = En. 
The WKB quantization is a semiclassical method of obtain­
ing approximate eigenenergies in the limiting case of large 
quantum numbers or high energy. But it is found to be exact 
for the one-dimensional harmonic oscillator potential and 
the one-dimensional Morse potential.2-4 For other potentials, 
for example, the 3D-Coulomb potential or the 3D-harmonic 
oscillator potential, the WKB quantization does not repro­
duce the exact eigenenergies.

Sukhatme et al. reported that all solvable potentials are 
inter-related to each other by a certain transformation.5,6 
They classify the solvable potentials by type-I and type-II. 
The type-II category includes three potentials, i.e., the one­
dimensional Morse (V M(r)), the 3D-Coulomb (V C(r)) and 
the 3D-harmonic oscillator (V H(r)) potentials. And the three 
potentials can be transformed to each other by the so-called 
point canonical transformation.

In this work we briefly introduce a new method of deter­
mining the exact eigenenergies of V C(r) from the point 
canonical transformation and the WKB quantization. As 
mentioned before, the exact eigenenergies of V M(r) can be 

obtained from the WKB quantization but the eigenenergies 
of V C(r) are not. First, we transform the Schrodinger 
equation with V C(r) into another Schrodinger equation with
V M(r). And then we apply the WKB quantization to the
V M(r) to obtain a relationship between the eigenenergies of
V C(r) and those of V M(r). Since the exact eigenenergies of
V M(r) are known, the eigenenergies of V C(r) can be deter­
mined from the relationship. The above argument is also 
valid for the 3D-harmonic oscillator potential V H(r).

We define the 3D-Coulomb and the 3D-harmonic oscil­
lator potentials as follows.4-6 For a given angular momentum 
quantum number l, the 3D-Coulomb potential (q = charge 
parameter) is

2
V(r) = VC(r)=—七 + l(l -1)(0 < r <8) (3)

r r2
4

and the eigenenergies EC  -------- - ------ - for n = 0,1,2,...
4( n +1 +1 )2 (4)

Since VC(r) goes to zero as r — 8, the bound state 
eigenenergies EnC are negative.

For a given l, the 3D-harmonic oscillator potential (a)= 
frequency parameter) is

V(r) = V H( r) = \a r2 + 시 + 1- (0 < r <8) (5)
4r

and the eigenenergies E： =(2n + l + |^ a for n = 0,1,2,...

(6)

For reference, the one-dimensional Morse potential (A, B, 
a = parameters) is

VM(x) = B2产a-2B(A + ae—ax (—8<x<8). (7)

The phase-space integral in the WKB quantization can be 
analytically evaluated as4
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肯辰二帀dx =寒+号-J冃 (8)

where 产(xL)=产(xR) = E?. Since 产(x) goes to zero 
as x — 8, the eigenenergies E? are negative.

Canonic지 Transformation and WKB 
for 3D-Coulomb Potenti지

For the 3D-Coulomb potential, the Schrodinger equation 
is
r ,2 2
-쓰-쓰+

dr2 r
甲；(r) = EC 甲；(r) (0 < r <8) (9)

C，with the boundary condition of T„ (r) = 0 as r — 0 and 
r — 8. Canonically transforming, i.e., changing the 
variable r to x = -lnr and the wave function T„(r) to 
Q(x) = ex/2甲C(r), one obtains

d 厂Q -2 x 2 -x . f j . 1、2冬/\
-—--En e - q e + Il + 刃 <^n (x) = 0

_ dx ^ 2 _
(-8 < x < 8 ). (10)

The new function ①」x) satisfies the boundary condition of 
^n(x) = 0 as x — -8 and x — 8. The transformation is 
sometimes called the Langer transformation.7-9 Note that the 
canonical transformation converts Eq. (9) on the half-line (0, 
8) to Eq. (10) on the full-line (-8, 8).

Once En and ①n(x) are given, Eq. (10) can be 
considered as a Schrodinger equation for a Morse potential 
V?(x) = -ECe-2x-q2e-x with E? = -fl + §2, ie.,

'd2 M 1 M- 으3 + V"(x) $„(x) = E?色(x). (11)
dx

Eq. (11) looks awkward because the potential contains the n- 
dependent En term. But, in fact, the potential is not a 
function of n because the potential is defined for a fixed n,
i.e., Eq. (11) is defined for each n. Note that the eigenvalue 
En is the same for all n. Therefore Eq. (11), as a whole, is a 
Schrodinger equation with the eigenfuncion ①」x) and the 

t?M 10eigenenergy En .10
One can evaluate E? in Eq. (11) using the WKB 

quantization in Eq. (2) that is exact for Horse potentials,

£R JE「(- E尸x - q2e「x) dx = fn + § 冗 (12) 

where 产(乂丄)= 产(xr ) = E?. (In Appendix we explicitly 
show why the WKB quantization is exact for ?orse 
potentials but not exact for 3D-Coulomb potentials or for 
3D-harmonic oscillator potentials.) Comparing the potential 
in Eq. (12) with that in Eq. (7), one immediately finds that 
a = 1, B = J-E；, and A = q/J-EC-1/2. From the 
phase-space integral expression in Eq. (8) and the WKB 
quantization in Eq. (12), one obtains

2

W-EC

n + 1' n for n = 0, 1, 2, ... (13)

And the ?orse eigenenergy E? is

？En (14)

Eq. (14) shows the relationship between the eigenenergies of 
the original 3D-Coulomb potential -q2/r + l(l + 1)/r2 and 
those of the transformed ?orse potential - EnCe-2x - q2e-x . 
Since En = -(l+1/2) , Eq. (14) gives the eigenenergies of 
the 3D-Coulomb potential EC = -q4/4(n +1 + 1 )2 (n = 0, 
1, 2, .) that is identical with that in Eq. (4). Indeed the new 
method that utilizes the point canonical transformation and 
the WKB quantization reproduces the exact eigenenergies of 
the 3D-Coulomb potential.

To make the WKB quantization exact for the 3D-coulomb 
potential, modified versions of WKB quantization have been 
suggested. The earliest work was the Langer modification2
where the centrifugal term l(l + 1)/r in Eq. (19) is 
replaced by (l + 1/2 )2/r2.7 Though various modifications or 
improvements of the WKB quantization, since the Langer’s 
work, have been studied, they all include the term 
(l + 1/2) /r (or some operator related to it) in their 
modification.8,9,11

The Langer modification has its own physical origin, but 
using our transformation technique we can justify the 
existence of the modification algebraically. Inserting 
E? = -(l+1/2)2 into the WKB quantization in Eq. (12), 
one obtains

+ ECe-2x+q1 e~x dx = fn + ?) n. (15)

Changing the variable x back to r using the previous x = 
-lnr, one obtains

dr = fn + !) n. (16)

Eq. (16) is none other than the Langer modified WKB 
quantization that can exactly reproduce the eigenenergies of 
the 3D-Coulomb potential. We would like to stress that our 
transformation technique naturally introduces the Langer 
modification without imposing any semiclassical approxi­
mation.

Example of 3D-Harmonic Oscillator Potential

The method proposed in the previous section can be 
applied to any potential that can be transformed to a ?orse 
potential. In this section, taking the 3D-harmonic oscillator 
potential as another example, we repeatedly show how the 
method works.

For the 3D-harmonic oscillator potential, the Schrodinger 
equation is
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—으_+丄 折『 + l(l+1)l 中七 r) = EH TH (r)
2 + 4 七 + 2 Tn ((En T n ((dr 4 r

(—8 < x < 8 ). (17)

Changing the variable r to x = - 2ln r and the wave function 
나껴 (r) to ①n (x) = ex/4나/H (r), one obtains

d I (D —2x En —x . 1 Ci .】、/、 八 /■] o、
_y-+诟e "Te +41l+2丿①"(x) = °- (18)dx 16 4 아' 2

Eq. (18) can be considered as a Schrodinger equation for a 
Morse potential rM(x)=(仃/16)e-2x-(E：/4)e—x with 
eigenenergy eV = -(1/4)(l + 1/2)2 .

The WKB quantization for Eq. (18) is

母厂 M (展-2x En -斜 / C . 1A zinx

h a[E"-(16e -Te 丿 dx = (n + 2丿亿(19)
Comparing the Morse potential in Eq. (19) with that in Eq. 
(7), one finds that a= 1, B =划4, and A = E? Um - 1/2. 
From Eq. (8) and Eq. (19), one obtains

K*--「功=(n + 2)n for n = °, 1, 2, ... (2°)

Then the Morse eigenenergy EnM is

(21)

Since E? = -(1/4)(l + 1/2)2, the eigenenergies of the 
3D-harmonic oscillator potential is En = (2n + l + 3/2)- 
(n = °, 1, 2, ... ) that is identical with the exact eigenenergies 
in Eq. (6). Again we are able to derive the exact eigen- 
energies of the 3D-harmonic oscillator potential using the 
point canonical transformation and the WKB quantization.

Following the same way for the 3D-Coulomb potential, 
the Langer modified WKB quantization is derived as

dr = (n + 1■丿 n. (22)

The Langer modification for the 3D-harmonic oscillator 
potential turns out to be the same as that for the 3D­
Coulomb potential. Actually it is the same for all solvable 
spherically symmetric potentials.9,12

Conclusion

The point canonical transformation has been introduced to 
explain the inter-relation among the exactly solvable 
potentials.5,6 This transformation has been utilized to explain 
the supersymmetry6,13 of certain potentials.10 In this work we 
have found another interesting usage of the transformation.

Using the point canonical transformation, the Schrodinger 
equation for the 3D-Coulomb potential is converted to 
another Schrodinger equation with a Morse potential. Then 

an application of the WKB quantization to the Morse 
potential yields a relationship between the eigenenergies of 
the Coulomb and those of the Morse potentials. From the 
relationship the exact eigenenergies of the Coulomb potential 
are derived. The Langer modified WKB quantization is also 
algebraically derived. The proposed method is valid for any 
potential that can be transformed to a Morse potential. As 
another example, the exact eigenenergies of the 3D­
harmonic oscillator potential are determined by using the 
same method.

Other solvable potentials belonging to the type-I category 
(e.g., the Eckart potential, the Scarf potential, and the Rosen-
Morse potential, etc.) are related to the type-II potentials
(e.g., the Morse potential, etc.) through redefinition of 
parameters and the so-called limiting procedure.5 Therefore
the type-I potentials are easily transformed to a Morse
potential and, consequently, our method can be again used to 
determine the exact eigenenergies of the type-I potentials.
As a matter of fact, all the type-I and type-II potentials have 
a common feature of Natanzon potentials that are exactly 
solvable.

One cannot say that the WKB quantization is exact for all 
solvable potentials. However it is not appropriate for one to 
assert that the WKB quantization is useless when one desires 
exact eigenenergies of solvable potentials other than the 
Morse potential (or one-dimensional harmonic oscillator 
potential.) As shown in this work, the WKB quantization 
may be useful even in low energy regime where semi- 
classical approximation is not valid.

Appendix

Another way of modifying the WKB quantization is to introduce 
the nonintegral Maslov index 口2,1아 In this scheme the exact 
quantization condition is written as

U jEn - V(r) dr = (n + g n . (A1)

When the Maslov index 日=2, Eq. (A1) is, of course, reduced to the 
WKB quantization. There is no general way of evaluating the Maslov 
index for an arbitrary potential. However it can be evaluated for 
exactly solvable potentials. The direct method of evaluating the 
Maslov index is to adopt an exact quantization, for example, the 
analytical transfer matrix method (ATMM).

The ATMM quantization condition can be summarized as15

』En - V(r) dr + 8„ = (n + 1)n . (A2)

And the so-called scattering-led phase shift & is

侦 _ |"rR 7 , / \ Pn (r)人 z、
이 Jr, k (r丿P/(r) (A3)

where kn'(r) = d)시E-- V-r-] and Pn'(r) = 쓰书 .
dr dr

Pn(r) is the minus log derivative of the n-th state wave function 
나七(r), i.e., Pn(r) = (d나"(r)/dr)/나七(r). Comparing Eq. (A1) with 
Eq. (A2), one immediately finds that the Maslov index 
卩=4(1 - &In).

For the general form of Morse potential given in Eq. (7) including 
the forms in Eqs. (12) and (19), we have found 爲=1/2n in our 
former work.16 Consequently the Maslov index 卩，is 2. It proves that 
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the WKB quantization should be valid for the Morse potential.
In our previous paper17 in this Journal we have presented 

& = 시l(l + 1)-1)n for the 3D-Coulomb potential in Eq. (3). 
Therefore the Maslov index 卩，is 4 [l +1 — "l(l + 1) ] . Using the same 
method suggested in the previous paper we algebraically evaluate the 
phase shift and the Maslov index for the 3D-harmonic oscillator 
potential Eq. (5) for the first time. And the result is that 
& = [("l(l + 1)-1)/2 + 1/4]n and 以=3-2"l(l +1) + 21. (In 
Ref. 14, based on qualitative arguments, the same Maslov index has 
been deduced.) It shows that the WKB quantization is not valid for the 
3D-Coulomb potential nor for the 3D-harmonic oscillator potential 
since 卩，is not 2. However, this work extends the validity of the WKB 
quantization to the 3D-Coulomb and 3D-harmonic oscillator 
potentials through the point canonical transformation.
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