DOI QR코드

DOI QR Code

Trimerization of Isobutene over Solid Acid Catalysts: Comparison between Cation-exchange Resin and Zeolite Catalysts

  • Yoon, Ji-Woong (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Jhung, Sung-Hwa (Department of Chemistry, Kyungpook National University) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2008.02.20

Abstract

Catalytic trimerization of isobutene to produce triisobutenes has been performed over cation-exchange resin and zeolite catalysts. Resin catalysts have the advantage of long lifetime and high trimers selectivity even though the regeneration of an aged catalyst is not satisfactory. On the contrary, zeolite catalysts can be regenerated facilely by simple calcination in air even though the lifetime is short and trimers selectivity is low probably due to small pore size and strong acidity, respectively. It is, therefore highly desirable to develop an inorganic acid catalyst with macro- or meso-pores to show catalytic performances similar or superior to those of macroporous resin catalysts.

Keywords

References

  1. Mantilla, A.; Ferrat, G.; Lopez-Ortega, A.; Romero, E.; Tzompantzi, F.; Torres, M.; Ortiz-Islas, E.; Gomez, R. J. Mol. Catal. A 2005, 228, 333 https://doi.org/10.1016/j.molcata.2004.09.080
  2. Alcantara, R.; Alcantara, E.; Canoira, L.; Franco, M. J.; Herrera, M.; Navarro, A. Reactive Funct. Polymer 2000, 45, 19 https://doi.org/10.1016/S1381-5148(00)00004-3
  3. www.axens.net
  4. Burnes, E.; Wichelns, D.; Hagen, J. W. Energy Policy 2005, 33, 1155 https://doi.org/10.1016/j.enpol.2003.11.013
  5. Jeon, J.-K.; Park, S.-K.; Park, Y.-K. Catal. Today 2004, 93-95, 467 https://doi.org/10.1016/j.cattod.2004.06.061
  6. Honkela, M. L.; Krause, A. O. Ind. Eng. Chem. Res. 2004, 43, 3251 https://doi.org/10.1021/ie030842h
  7. Marchionna, M.; Girolamo, M. D.; Patrini, R. Catal. Today 2001, 65, 397 https://doi.org/10.1016/S0920-5861(00)00587-3
  8. Girolamo, M. D.; Marchionna, M. J. Mol. Catal. A 2001, 177, 33 https://doi.org/10.1016/S1381-1169(01)00307-7
  9. Chiche, B.; Sauvage, E.; Renzo, F. D.; Ivanova, I. I.; Fajula, F. J. Mol. Catal. A 1998, 134, 145 https://doi.org/10.1016/S1381-1169(98)00031-4
  10. Girolamo, M. D.; Lami, M.; Marchionna, M.; Percarollo, E.; Tagliabue, L.; Ancillotti, F. Ind. Eng. Chem. Res. 1997, 36, 4452 https://doi.org/10.1021/ie9700932
  11. Mantilla, A.; Tzompantzi, F.; Ferrat, G.; Lopez-Ortega, A.; Romero, E.; Ortiz-Islas, E.; Gomez, R.; Torres, M. Chem. Commun. 2004, 1498
  12. Mantilla, A.; Tzompantzi, F.; Ferrat, G.; Lopez-Ortega, A.; Alfaro, S.; Gomez, R.; Torres, M. Catal. Today 2005, 107-108, 707 https://doi.org/10.1016/j.cattod.2005.07.153
  13. Yoon, J. W.; Chang, J.-S.; Lee, H.-D.; Kim, T.-J.; Jhung, S. H. J. Mol. Catal. A 2006, 260, 181 https://doi.org/10.1016/j.molcata.2006.07.026
  14. Japanese Patent JP 2005015383 (assigned to Idemitsu Kosan)
  15. Japanese Patent JP 2005015384 (assigned to Idemitsu Kosan)
  16. Yoon, J. W.; Lee, J. H.; Chang, J.-S.; Choo, D. H.; Lee, S. J.; Jhung, S. H. J. Catal. 2007, 245, 253 https://doi.org/10.1016/j.jcat.2006.10.008
  17. Yoon, J. W.; Lee, J. H.; Chang, J.-S.; Choo, D. H.; Lee, S. J.; Jhung, S. H. Catal. Commun. 2007, 8, 967 https://doi.org/10.1016/j.catcom.2006.10.006
  18. Yoon, J. W.; Jhung, S. H.; Choo, D. H.; Lee, S. J.; Chang, J.-S. Chem. Lett. 2007, 36, 1504 https://doi.org/10.1246/cl.2007.1504
  19. Yoon, J. W.; Jhung, S. H.; Choo, D. H.; Lee, S. J.; Lee, K.-Y.; Chang, J.-S. Appl. Catal. A 2008, 337, 73 https://doi.org/10.1016/j.apcata.2007.12.001
  20. Yoon, J. W.; Jhung, S. H.; Lee, J. S.; Kim, T.-J.; Lee, H.-D.; Chang, J.-S. Bull. Kor. Chem. Soc. 2007, 28, 2075 https://doi.org/10.5012/bkcs.2007.28.11.2075
  21. Yoon, J. W.; Jhung, S. H.; Lee, J. S.; Kim, T.-J.; Lee, H.-D.; Chang, J.-S. Bull. Kor. Chem. Soc. 2008, 29, 57 https://doi.org/10.5012/bkcs.2008.29.1.057
  22. Sharma, M. M. Reactive Funct. Polymer 1995, 26, 3 https://doi.org/10.1016/1381-5148(95)00029-F
  23. Yoon, J. W.; Jhung, S. H.; Chang, J.-S. et al. Unpublished Results

Cited by

  1. Oligomerisation of isobutene with silica supported ionic liquid catalysts vol.14, pp.2, 2012, https://doi.org/10.1039/C1GC15989E
  2. Investigation of Production of Motor Fuel Components on Heterogeneous Catalyst with Oligomerization vol.56, pp.9-10, 2013, https://doi.org/10.1007/s11244-013-0041-2
  3. Oligomerization of Light FCC Naphtha with Ion Exchange Resin Catalyst vol.58, pp.14-17, 2015, https://doi.org/10.1007/s11244-015-0462-1
  4. -Butyl Ether Phaseout: The Role of Heterogeneous Catalysis vol.55, pp.43, 2016, https://doi.org/10.1021/acs.iecr.6b02533
  5. An Exprimental and Computational Study on the Cl Atom Initiated Photo-Oxidization Reactions of Butenes in the Gas Phase vol.121, pp.29, 2017, https://doi.org/10.1021/acs.jpca.7b04783
  6. Oligomerization of Butene Mixture over NiO/Mesoporous Aluminosilicate Catalyst vol.8, pp.10, 2018, https://doi.org/10.3390/catal8100456
  7. Trimerization of Isobutene Over Solid Acid Catalysts vol.13, pp.4, 2009, https://doi.org/10.1007/s10563-009-9080-x
  8. Liquid-phase Dehydration of 1-Phenylethanol to Styrene over an Acidic Resin Catalyst vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1327