Notes

Substitution Effect of Hydroxyl Groups on the ¹H and ¹³C Chemical Shifts in Hydroxyflavonols

Sunhee Lee, Younghee Park, Byoung-Ho Moon, Eunjung Lee, Sungwon Hong, and Yoongho Lim°

Division of Bioscience and Biotechnology, BMIC, Research Center for Drugs, RCTC, Konkuk University, Seoul 143-701, Korea E-mail: yoongho@konkuk.ac.kr Received April 24, 2008

Key Words : NMR. Hydroxyflavonol derivatives. Structure

Flavonoids belong to the secondary metabolites naturally occurring in plants. They have C6-C3-C6 framework and can be classified into several subclasses based on the oxidation level of the central pyran ring.¹ Their diverse structures are prepared by oxidation. alkylation. glycosylation, and so on. The variety of their biological activities such as anti-cancer, anti-viral. anti-inflammatory, and anti-oxidative activities is related with their structures.^{2,3} Most flavonoids are known to show anti-oxidative effects. Of them, scavenging effects of flavonol derivatives were reported previously.⁴ While the scavenging effect of 2'-hydroxy-flavonol was 84%. that of 3'-hydroxyflavonol was 39%.

Vitamin C showed the effect of 89% in the same experimental condition. That is, the anti-oxidative effects of flavonol derivatives are dependent upon the number of hydroxyl groups and their positions.

Many flavonol derivatives are being isolated from natural sources. Nuclear magnetic resonance (NMR) spectroscopy is widely used for their identification. Because the position and the number of substituted hydroxyl groups cause the changes of the ¹H and ¹³C chemical shifts, it is important to elucidate the substitution effect of hydroxyl groups. The substitution effect on flavonol derivatives can be used to identify the structures of the newly isolated hydroxyflavonol derivatives. In order to elucidate the substitution effects of hydroxyl groups on ¹H and ¹³C chemical shifts in hydroxyflavonols, 18 derivatives were chosen. Their structures and nomenclatures are shown in Figure 1. Of eighteen hydroxyflavonol derivatives, the NMR data of eleven hydroxyflavonol derivatives (1-6. 8-11, 17) have been previously reported.^{5.7} Because the ¹H and ¹³C chemical shifts of the remaining seven derivatives (7. 12-16. 18) were not reported yet, we carried out their complete assignments. The ¹H and

derivative	nomenclature	RI	R2	R3	R4	R5	R6	R7	R8
1	flavonol	Н	Η	Η	Н	Н	Η	Н	Н
2	6-hydroxyflavonol	Н	OH	Н	Н	Н	Н	Н	Н
3	7-hydroxyflavonol	Н	Η	OH	Н	Н	Η	Н	Н
4	2-hydroxyflavonol	Н	Н	Н	Н	OH	Н	Н	Н
5	3-hydroxyflavonol	Н	Η	Н	Н	Н	OH	Η	Н
6	4-hydroxyflavonol	Н	Η	Н	Н	Н	Η	OH	Н
7	5,7-dihydroxyflavonol (galangin)	OH	Η	OH	Н	Н	Н	Н	Н
8	6,3'-dihydoxyflavonol	Н	OH	Η	Н	Н	OH	Н	Н
9	6,4'-dihydoxyflavonol	Н	OH	Н	Н	Н	Н	OH	Н
10	7,3'-dihydoxyflavonol	Н	Н	OH	Н	Н	OH	Н	Н
11	7,4'-dihydoxyflavonol	Н	Η	OH	Н	Н	Η	OH	Н
12	5,7,2'-trihydroxyflavonol (datiscetin)	OH	Н	OH	Н	OH	Н	Н	Н
13	5,7,4'-trihydroxyflavonol (kaempferol)	OH	Η	OH	Н	Н	Η	OH	Н
14	6,2',3'-trihydroxyflavonol	Н	OH	Η	Н	OH	OH	Н	Н
15	7,3',4'-trihydroxyflavonol (fisetin)	Н	Η	OH	Н	Н	OH	OH	Н
16	7,3',4',5'-tetrahydroxyflavonol	Н	Η	OH	Н	Н	OH	OH	OH
17	5,7,3',4'-tetrahydroxyflavonol (quercetin)	OH	Н	OH	Η	Н	OH	OH	Н
18	5,7,8,3',4'-pentahydroxytlavonol (gossypetin)	OH	Η	OH	OH	Н	OH	OH	Н

Figure 1. Structures and nomenclatures of hydroxyflavonol derivatives 1-18.

1598 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 8

 Table 1. The ¹H chemical shifts of 18 hydroxyflavonol derivatives 1-18

$\delta \text{ of }^{1}\text{H}(J,\text{Hz})$											
position	1	2	3	4	5	6	7	8	9		
5	8.10 (dd, 1.5, 8.0)	7.37 (d, 3.0)	7.96 (d, 8.4)	8.14 (dd, 1.5, 8.0)	8.10 (dd, 1.3, 7.6)	8.09 (m)	_	7.37 (d, 3.0)	7.35 (d,3.0)		
6	7.42 (m)	-	6.91 (dd, 2.2 8.4)	7.46 (m)	7.43 (dd, 7.6, 7.6)	7.43 (dd, 7.8, 7.8)	6.12 (d, 2.0)	-	-		
7	7.76 (ddd, 1.5, 7.1, 8.5)	7.25 (dd, 9.0, 3.0)	_	7.76 (ddd, 1.5, 7.0, 8.5)	7.75 (m)	7.73 (m)	_	7.26 (dd, 3.0, 9.0)	7.22 (dd, 3.0, 9.1)		
8	7.71 (d, 8.5)	7.62 (d, 9.0)	6.94 (d, 2.2)	7.61 (d, 8.5)	7.69 (m)	7.70 (d, 8.3)	6.46 (d, 2.0)	7.60 (d, 9.0)	7.58 (d, 9.1)		
2'	8.20 (dd, 1.4, 7.2)	8.20 (m)	8.16 (d, 7.3)	-	7.72 (s)	8.11 (d, 9.0)	8.13 (d, 7.3)	7.67 (dd, 1.6, 2.4)	8.07 (d, 9.0)		
3'	7.54 (m)	7.55 (m)	7.53 (dd, 7.3, 7.3)	6.99 (dd, 0.8, 8.1)	-	6.95 (d, 9.0)	7.5 (m)	-	6.93 (d, 9.0)		
4'	7.42 (dd, 7.2, 7.2)	7.48 (m)	7.46 (dd, 7.3, 7.3)	7.35(ddd, 1.7, 7.4, 8.1)	6.92 (dd, 2.0, 8.0)	-	7.5 (m)	6.90 (ddd, 2.4, 2.4, 8.0)	-		
5'	7.54 (m)	7.55 (m)	7.53 (dd, 7.3, 7.3)	6.93 (ddd, 0.8, 7.4, 7.4)	7.35 (dd, 8.0, 8.0)	6.95 (d, 9.0)	7.5 (m)	7.34 (dd, 8.0, 8.0)	6.93 (d, 9.0)		
6'	8.20 (dd, 1.4, 7.2)	8.20 (m)	8.16 (d, 7.3)	7.44 (m)	7.65 (d, 8.0)	8.11 (d, 9.0)	8.13 (d, 7.3)	7.63 (ddd, 1.6, 2.4, 8.0)	8.07 (d, 9.0)		
3-OH	9.60 (s)	9.40 (s)	9.32 (s)	9.40 (bs)	9.55 (s)	9.32 (s)	9.62 (s)	9.32 (s)	9.10 (s)		
5-OH	-	-	-	-	-	-	12.44 (s)	-	-		
6-OH	-	9.98 (s)	-	-	-	-	-	9.95 (s)	9.89 (s)		
7-OH	-	-	10.83 (s)	-	-	-	10.87 (s)	-	-		
8-OH	-	-	-	-	-	-	-	-	-		
2-OH	-	-	-	9.40 (bs)	-	-	-	-	-		
3-OH	-	-	-	-	9.74 (s)	-	-	9.69 (s)	-		
4-OH	-	-	-	-	-	10.10(s)	-	-	10.04 (s)		
5-OH	-	-	-	-	-	-	-	-	-		
5-OH	-	-	-	-	-	-	-	-	-		
5-OH position	- 10	- 11	- 12	- 13	- 14	- 15	- 16	- 17	- 18		
5-OH position 5	- 10 7.94 (d, 9.3)	- 11 7.92 (d, 8.6)	- 12 -	- 13 -	- 14 7.38 (d, 2.9)	- 15 7.92 (d, 9.3)	- 16 7.92 (d, 8.7)	- 17 -	- 18 -		
5-OH position 5 6	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6)	- 12 6.20 (d, 1.9)	- 13 6.18 (d, 2.0)	- 14 7.38 (d, 2.9) -	- 15 7.92 (d, 9.3) 6.92 (m)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7)	- 17 6.18 (d, 2.0)	- 18 6.25 (s)		
5-OH position 5 6 7	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) -	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) -	- 12 6.20 (d, 1.9) -	- 13 6.18 (d, 2.0) -	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0)	- 15 7.92 (d, 9.3) 6.92 (m) -	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) -	- 17 6.18 (d, 2.0) -			
5-OH position 5 6 7 8	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3)	- 12 6.20 (d, 1.9) - 6.31 (d, 1.9)	- 13 6.18 (d, 2.0) - 6.43 (d, 2.0)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2)	- 17 6.18 (d, 2.0) - 6.40 (d, 2.0)	- - 6.25 (s) -		
5-OH position 5 6 7 8 2'	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0)	- 12 6.20 (d, 1.9) - 6.31 (d, 1.9) -	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) -	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s)	- - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2)	- 6.25 (s) - 7.77 (d, 2.2)		
5-OH position 5 6 7 8 2' 3'	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) -	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0)	- 12 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - -	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) -	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) -	- - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) -	- 6.25 (s) - 7.77 (d, 2.2) -		
5-OH position 5 6 7 8 2' 3' 4'	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) -	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) -	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - 6.91 (dd, 1.2, 7.8)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - -	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - -	- 17 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - -	 6.25 (s) 7.77 (d, 2.2) 		
5-OH position 5 6 7 8 2' 3' 4' 5'	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) - 6.91/6.93 (d, 9.0)	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - - -	- 17 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - 6.88 (d, 8.5)	 6.25 (s) 7.77 (d, 2.2) 6.88 (d, 8.5)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6'	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) - 6.91/6.93 (d, 9.0) 8.05 (d, 9.0)	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s)	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5)	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) - 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 9.26 (s)	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s)	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s)	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) -	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) - 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) -	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.40 (dd, 1.6, 7.5) 9.43 (bs) 12.54 (s)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) -	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) -	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) -	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s) 12.48 (s)	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH 6-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) - -	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) - -	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs) 12.54 (s) -	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s) -	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) - 9.89 (s)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) - -	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) - -	- 17 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s) 12.48 (s) -	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s) -		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH 5-OH 6-OH 7-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) - 10.78 (s)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) - 9.66 (s)	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs) 12.54 (s) - 10.79 (s)	- - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s) - 10.79 (s)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) - 9.89 (s) -	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) - 10.72 (s)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) - 10.73 (s)	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s) 12.48 (s) - 10.76 (s)	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s) - 10.37 (s)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH 6-OH 7-OH 8-OH 2-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) - 10.78 (s) -	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) - 9.66 (s) -	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs) 12.54 (s) - 10.79 (s) -	- - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s) - 10.79 (s) -	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) - 9.89 (s) - 0.000000000000000000000000000000000	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) - 10.72 (s) -	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) - 10.73 (s) -	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s) 12.48 (s) - 10.76 (s) -	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s) - 10.37 (s) 8.56 (s)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH 6-OH 7-OH 8-OH 2-OH 2-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) - 10.78 (s) - 0.65 (c)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) - 9.66 (s) -	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs) - 9.43 (bs) - 9.43 (bs)	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) - 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s) - 10.79 (s) -	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) - 9.89 (s) - 9.41 (s)	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) - 10.72 (s) - 0.25 (c)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) - 10.73 (s) - 0.16 (c)	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s) 12.48 (s) - 10.76 (s) - 0.24 (c)	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s) - 10.37 (s) 8.56 (s) - 0.22 (c)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH 6-OH 7-OH 8-OH 2-OH 3-OH 1-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) - 10.78 (s) - 9.66 (s)	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) - 9.66 (s) - 10.78 (c)	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs) 12.54 (s) - 9.43 (bs) - 9.43 (bs) -	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s) - 10.79 (s) - - 10.11 (c)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) - 9.89 (s) - 9.41 (s) -	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) - 10.72 (s) - 9.25 (s) 9.10 (c)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) - 10.73 (s) - 9.16 (s) 8.70 (-)		- - 6.25 (s) - 7.77 (d, 2.2) - - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s) - 10.37 (s) 8.56 (s) - 9.23 (s) 0.52 (c)		
5-OH position 5 6 7 8 2' 3' 4' 5' 6' 3-OH 5-OH 6-OH 7-OH 8-OH 2-OH 3-OH 3-OH 5-OH	- 10 7.94 (d, 9.3) 6.93 (dd, 2.2, 9.3) - 6.91 (d, 2.1) 7.63 (dd, 1.8, 2.4) - 6.88 (dd, 2.4, 8.0) 7.33 (dd, 8.0, 8.0) 7.59 (m) 9.26 (s) - 10.78 (s) - 9.66 (s) -	- 11 7.92 (d, 8.6) 6.90 (dd, 2.3, 8.6) - 6.92 (d, 2.3) 8.05 (d, 9.0) 6.91/6.93 (d, 9.0) 8.05 (d, 9.0) 9.26 (s) - 9.66 (s) - 10.78 (s)	- 12 - 6.20 (d, 1.9) - 6.31 (d, 1.9) - 6.97 (d, 8.2) 7.34 (ddd, 1.6, 7.5, 8.2) 6.91 (dd, 7.5, 7.5) 7.40 (dd, 1.6, 7.5) 9.43 (bs) 12.54 (s) - 9.43 (bs) - 9.43 (bs) - 9.43 (bs) - -	- 13 - 6.18 (d, 2.0) - 6.43 (d, 2.0) 8.03 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) 6.92 (dd, 2.0, 6.9) 8.03 (dd, 2.0, 6.9) 9.38 (s) 12.48 (s) - 10.79 (s) - 10.11 (s)	- 14 7.38 (d, 2.9) - 7.22 (dd, 2.9, 9.0) 7.47 (d, 9.0) - - 6.91 (dd, 1.2, 7.8) 6.75 (dd, 7.8, 7.8) 6.88 (dd, 1.2, 7.8) 8.89 (bs) - 9.89 (s) - 9.41 (s) - -	- 15 7.92 (d, 9.3) 6.92 (m) - 6.92 (m) 7.69 (d, 2.0) - 6.89 (m) 7.56 (dd, 2.0, 8.5) 9.00 (s) - 10.72 (s) - 9.25 (s) 9.49 (s)	- 16 7.92 (d, 8.7) 6.89 (dd, 2.2, 8.7) - 6.85 (d, 2.2) 7.24 (s) - 7.24 (s) 8.98 (s) - 10.73 (s) - 9.16 (s) 8.70 (s) 9.16 (c)	- 17 - 6.18 (d, 2.0) - 6.40 (d, 2.0) 7.67 (d, 2.2) - 6.88 (d, 8.5) 7.54 (dd, 2.2, 8.5) 9.34 (s) 12.48 (s) - 10.76 (s) - 9.34 (s) 9.57 (s)	- - 6.25 (s) - 7.77 (d, 2.2) - 6.88 (d, 8.5) 7.64 (dd, 2.2, 8.5) 9.26 (s) 11.91 (s) - 10.37 (s) 8.56 (s) - 9.23 (s) 9.53 (s)		

Notes

	δof ¹³ C																	
position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2	145.1	145.0	144.2	147.6	145.3	146.1	145.8	144.9	145.8	144.1	145.0	148.2	146.8	147.2	145.0	145.1	146.7	146.5
3	139.1	138.5	138.5	138.9	139.1	137.8	137.2	138.3	137.2	138.3	137.1	136.9	135.7	138.0	137.1	137.3	135.6	135.3
4	173.0	172.7	172.4	172.8	173.0	172.5	176.3	172.5	172.1	172.2	172.0	176.4	175.9	172.3	171.9	171.9	175.7	175.9
5	124.8	106.9	126.6	124.9	124.8	124.7	160.9	106.7	106.8	126.5	126.4	161.4	160.7	106.8	126.4	126.5	160.6	152.1
6	124.5	154.2	115.0	124.4	124.6	124.5	98.4	154.0	154.0	114.8	114.6	98.2	98.2	153.9	114.6	114.6	98.1	97.8
7	133.6	123.4	162.6	133.4	133.7	133.4	164.3	123.3	122.8	162.5	162.2	163.9	163.9	122.9	162.2	162.2	163.8	152.5
8	118.3	119.9	102.1	118.4	118.2	118.3	93.7	119.6	119.5	101.8	101.9	93.5	93.5	119.7	101.8	101.7	93.3	1 2 4.6
9	154.5	148.7	156.6	155.1	154.6	154.4	156.5	148.5	148.4	156.4	156.3	157.0	156.2	149.1	156.3	156.2	156.0	144.76
10	121.3	122.2	114.3	122.0	121.3	121.4	103.3	121.9	12 2 .1	114.1	114.2	103.7	103.1	122.7	114.2	114.1	102.9	102.6
1'	131.3	131.6	131.5	118.3	132.5	122.0	131.3	132.5	122.2	132.5	122.2	118.0	121.7	119.1	122.5	121.3	121.9	122.2
2'	127.6	127.7	127.4	155.4	114.7	129.6	127.6	114.4	129.5	114.2	129.2	155.4	129.5	143.8	114.9	107.0	115.0	115.2
3'	128.5	128.6	128.5	116.4	157.4	115.5	128.6	157.2	115.4	157.4	115.3	116.4	115.4	145.9	145.0	135.3	145.0	144.85
4'	129.8	129.8	129.6	131.5	117.1	159.2	130.0	116.8	159.0	116.6	158.7	131.6	159.2	116.7	147.2	145.7	147.6	147.5
5'	128.5	128.6	128.5	118.7	129.6	115.5	128.6	129.4	115.4	129.4	115.3	118.8	115.4	118.8	115.5	135.3	115.5	115.3
6'	127.6	127.7	127.4	131.0	118.3	12 9.6	127.6	118.3	129.5	118.1	129.2	130.9	129.5	120.6	119.6	107.0	119.9	120.1

Table 2. The ¹³C chemical shift of 18 hydroxyflavonol derivatives 1-18

¹³C chemical shifts of 18 derivatives are listed in Tables 1 and 2, respectively.

The substitution effect on the changes of the ¹H and ¹³C chemical shifts in hydroxyflavonol derivatives was investigated based on the elucidation of the data listed in Tables 1 and 2. Generally, the substitution of hydroxyl groups affects *ortho* and *para*-position of flavonol. This effect causes the ¹H and ¹³C chemical shifts of those positions to move upfield. The result has been ascribed to the increasing electron density supplied by resonance-based lone pair electron distribution into the A- or B-rings. In addition, the hydroxyl-ation at A-ring has no effect on the ¹H and ¹³C chemical shift changes at B-ring. and *vice versa*.⁸ In particular, the authors found two distinctive features of the substitution effect on the ¹H and ¹³C chemical shifts changes of hydroxyflavonol derivatives.

First of all, the ¹H NMR data show the different effects of the introduction of a hydroxyl group in position 5. 5-OH protons (12.51 \pm 0.07 ppm) showed more downfield shifted value than 3-OH protons $(9.31 \pm 0.31 \text{ ppm})$. The reason is the effect of the intramolecular hydrogen bonding between C-4 keto and C-5 hydroxyl groups, forming a six-membered ring. The hydrogen bonding causes the ¹H chemical shift of 5-OH position to move 3.2 ppm more downfield shift than the ¹H chemical shift of 3-OH position. In the ¹³C NMR data, the presence of a C-5 hydroxyl group causes a downfield shift of the C-4 resonance of about 3.1 ± 0.3 ppm too because of the intramolecular hydrogen bonding. In the other aspect, the effect of hydroxylation on the ¹³C NMR spectra can be assessed by comparing the ¹³C chemical shifts of flavonol to those of ortho-position of the substituted flavonol ($\Delta \delta_{\text{hydroxylation}} = \delta_{\text{flavonol}} - \delta_{\text{ortho-position}}$). For example, the hydroxylation effect of derivative 4. 2-hydroxyflavonol. shows that the ¹³C chemical shift of the ortho-position moves upfield about 12.2 ppm: $\delta_{C-3 \text{ of flavonol}}$ (128.6 ppm) – $\delta_{\text{C-3 of 2-hydroxyflavonol}}$ (116.4 ppm) = $\Delta \delta_{\text{hydroxyflavonol}}$ (12.2 ppm).

The substitution effect in the A-ring may be considered to be a complicated result of the ¹³C chemical shifts of hydroxyflavonol because of the effect of oxygen of C-9 position and carbonyl group of C-10 position. However, the effect of substitution in the B-ring obviously shows that the ortho effect of the hydroxyl substituent on the ¹³C chemical shifts of the benzene ring is upfield of 12.7 ± 0.6 ppm. Their *para* effect appears upfield of 9.5 ± 0.4 ppm. For illustration, a polyhydroxylated flavonol, derivative 18 known as gossypetin, shows that the ¹³C chemical shift of C-4 position (175.9 ppm) moves 2.9 ppm more downfield than that of C-4 position (173.0 ppm) of flavonol because of hydrogen bonding between 5-OH and C-4 carbonyl oxygen. The ¹³C chemical shifts of C-2 and C-5 position (115.2 and 115.3 ppm) move 12.8 ± 0.4 ppm more upfield than those of C-2 and C-5 position (127.6 and 128.5 ppm) of flavonol due to the ortho effect of the OH substituent in the B-ring.

Experimental Section

Hydroxyflavonol derivatives 1-18 were purchased from INDOFINE chemical company. Inc. (Hillsborough, NJ, USA). The chemicals were used for the NMR experiments without further purification, which were supplied from the company at the purity of 98%.⁵

All NMR experiments were performed on a Bruker Avance 400 spectrometer (9.4 T. Karlsruhe, Germany). We prepared the samples in DMSO- d_6 at 298 K, and their concentrations as approximately 50 mM. For the ¹H and ¹³C NMR experiments, 1 sec and 3 sec relaxation delays were used, respectively. The data points for ¹H NMR and ¹³C NMR were 32 K and 64 K. respectively, and their 90° pulses were 10.2 and 10.3 μ sec, respectively. The spectral widths for ¹H NMR and ¹³C NMR were 6.000 Hz and 23.809 Hz, respectively. All two-dimensional spectra were acquired with 2.048 × 256 data points ($t_2 \times t_1$) with magnitude mode. 1600 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 8

The long-ranged coupling time for HMBC was 70 msec. The zero filling of 2 K and sine squared bell window function were applied using XWIN-NMR (Bruker).⁶

Acknowledgments. This work was supported by grant KRF-2006-005-J03402 (KRF). Biogreen 21 (RDA, Korea Ministry of Agriculture and Forestry), and grant from the second BK21 (MOE). Sunhee Lee and Younghee Park contributed equally to this work.

References

1. Harborne, J. B. *The Flavonoids: Advances in Research*: Chapmann & Hall: London, 1994.

- Wu, W.; Yan, C.; Li, L.; Liu, Z.; Liu, S. J. Chromatogr A 2004, 213, 1047.
- Verbeek, R.; Plomp, A. C.; Van Tol, E. A.; Van Noort, J. M. Biochem. Pharmacol. 2004, 68, 621.
- Young, J.; Park, Y.; Lee, Y.; Kim, H.; Shim, Y.; Ahn, J.; Lim, Y.J. Microbiol. Biotechnol. 2007, 17, 530.
- Park, Y.; Lee, Y. U.; Kim, H.; Lee, Y.; Yoon, Y.; Moon, B.; Chong, Y.; Ahn, J.; Shim, Y.; Lim, Y. Bull. Korean Chem. Soc. 2006, 27, 1537.
- Moon, B.; Lee, Y.; Ahn, J.; Lim, Y. Magn. Reson. Chem. 2005, 43, 858.
- Kim, H.; Moon, B.; Ahn, J.; Lim, Y. Magn. Reson. Chem. 2006. 44, 188.
- Park, Y.; Moon, B.; Lee, E.; Lee, Y.; Yoon, Y.; Ahn, J.; Lim, Y. Magn. Reson. Chem. 2007, 45, 674.