Notes

## Cesium Selective Calix[6]arene Bisbridged Receptor

Hyoung Min Yeo, Su Yeon Kang, Byung Ju Ryu, Seung Whan Ko, and Kye Chun Nam<sup>®</sup>

Department of Chemistry and Institute of Basic Science, Chonnam National University. Gwangju 500-757. Korea "E-mail: kcnam@chonnam.ac.kr Received October 5, 2007

Key Words : Calix[6]arene. Cesium ionophore. Nuclear waste, Selective binding

Calixcrowns are macromolecular hybrid structures composed of calix[n]arenes and crown ethers which have been demonstrated to be very effective complexing agents for alkali and other metal ions.<sup>1-3</sup> In particular, calix[4]arene crown-6 hosts have been extensively investigated in the sequestration and removal of radioactive Cs137 ions from aqueous waste mixtures.<sup>4,5</sup> Cesium-137 is a relatively abundant nuclear fission product and constitutes a major source of heat in nuclear waters<sup>6,7</sup> along with strontium-90. Much effort has been made to the development of improved processes<sup>8.9</sup> for the removal of cesium-137 from nuclear wastes. For the efficient removal of cesium, several crown ethers have been prepared and their binding properties were investigated. Calixcrowns have been constructed from all four conformational isomers of calix[4]arenes (cone. partial cone, 1.2-, and 1.3-alternate) and structure-property correlations have been developed to a level where application of these molecules has become common.<sup>10,11</sup> Also the bisbridged calix[4]crowns has been developed since the introduction of a second bridging unit generally increases the rigidity of the calix[4]arene framework.<sup>12</sup> For the development of a selective ligand for cesium ion. calix[6]arenes have been utilized as a receptor.<sup>13</sup> But, selectivity over potassium and rubidium is not quite high. The lack of selectivity has been attributed into the flexibility of the parent calix[6]arene moieties. The most effective approach to make them immobile is to build a bridge at the lower. Since Gutsche's lower rim-bridged calix[6]arene<sup>14</sup> in 1993. several lower rim-multibridged calix[6]arenes and their ion binding properties were reported.15-19

For the purpose of developing cesium selective ion receptors, we prepared three new calix[6]arene bisbridged receptor and investigated their structural and alkali metal ion binding properties by UV. <sup>1</sup>H NMR and solvent extraction.

The bridging of the calix[6]arene was accomplished by the reaction of 1.4-dialkyl ethers  $1^{20}$  and 1.2-bis(bromomethyl)benzene in the presence of  $Cs_3CO_3$  in dilute solution as shown in Scheme 1. <sup>1</sup>H NMR spectrum of **2c** showed two pairs of doublets at  $\delta$  4.4-3.0 for the bridged methylene protons and a pair of doublets of eight diastereotopic bridged methylene protons (ArCH<sub>2</sub>O-) at  $\delta$  5.0-4.4. But, <sup>1</sup>H NMR spectrum of **2a** and **2b** did not show clear two pairs of doublets for the bridged methylene protons. The 1.2-bridged calix[6]arene ligands **1,2,3** could be defined as cone or 1.2.3-alternate conformer based on <sup>1</sup>H NMR.

The crystal structure confirms that 2a exists as the 1,2,3alternate conformation as shown in Figure 1. Two methoxymethyl substituents were tilted inward to fill the empty calixarene cavity. Table 1 shows the detail data for X-ray structure refinement for 2a.

The alkali metal binding properties were investigated from

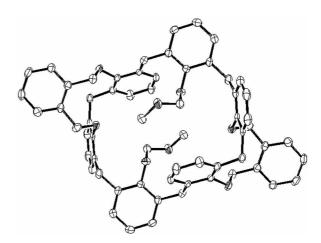
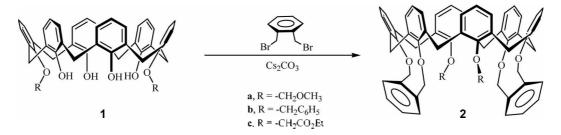




Figure 1. Crystal structure of 2a. Solvent molecule (molecule of chloroform) and hydrogen atoms have been omitted for clarity.



Scheme 1. Synthesis of 1,2-bridged calix[6]arene.

## 212 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 1

| Table 1  | Crivetal dat | a and structu | re refineme  | ant for 2a |
|----------|--------------|---------------|--------------|------------|
| Table L. | CIVSIAI DAL  | a and suuciu  | ie ieinienie |            |

| Empirical formula             | C32 H29 Cl3 O4                                    |
|-------------------------------|---------------------------------------------------|
| Formula weight                | 583.90                                            |
| Crystal system                | Monoclinic                                        |
| Space group                   | P2(1)/c                                           |
| Unit cell dimensions          | a = 8.2317(6) Å $\alpha$ = 90°.                   |
|                               | b = 19.8039(14) Å $\beta$ = 94.3230(10)°          |
|                               | $c = 17.1879(13) \text{ Å } \gamma = 90^{\circ}.$ |
| Goodness-of-fit on F2         | 1.221                                             |
| Final R indices [I>2sigma(I)] | R1 = 0.0956, wR2 = 0.1670                         |
| R indices (all data)          | R1 = 0.1278, wR2 = 0.1781                         |
| Largest diff. peak and hole   | $0.342$ and $-0.417 \text{ e}.\text{Å}^{-3}$      |

**Table 2.** Percentage extraction (%) of alkali picrates from water into  $CH_2Cl_2$  at 25 °C<sup>*a*</sup>

| Ligands · |    |     | %E |     |      |
|-----------|----|-----|----|-----|------|
|           | Li | Na⁻ | K⁺ | Rb⁻ | C s⁻ |
| 2a        | 0  | 0   | 0  | 0   | 0    |
| 2b        | 0  | 0   | 0  | 0   | 0    |
| 2c        | 0  | 0   | 0  | 0   | 12   |

 $^41 \pm 10^{-3}$  M receptor solution in CH\_2Cl\_2 was shaken (15 hrs) with  $1.10^{-4}$  M picrate salt solution in H\_2O.

two phases extraction experiment where aqueous solutions of the picrate salts are shaken with methylene chloride solutions of ligands. The amount of metal ion was determined from picrate absorption in the UV spectrum. Table 2 showed the percent extraction of metal picrate salts by 2a. 2b and 2c. 2a and 2b showed no extraction with alkali metal ions and only 2c showed 12% of cesium extraction. Two aromatic rings at the rower rim of calix[6]arene do not give any influence for the cesium binding. But, a weak binding of cesium with 2c can be explained from the effect of two ester groups at 1,4-position.

The cation binding properties of 2c were examined by <sup>1</sup>H NMR experiment in CD<sub>3</sub>CN. The addition of excess CsClO<sub>4</sub> caused a slight downfield shift of bridged methylene protons

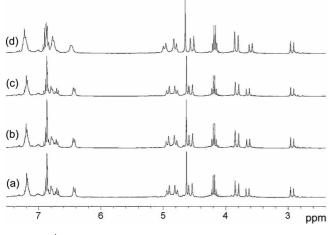



Figure 2. <sup>1</sup>H NMR spectra of 2c (a) without cation (b) with 100 eq. of KClO<sub>4</sub> (c) with 100 eq. of RbClO<sub>4</sub> (d) with 100 eq. of CsClO<sub>4</sub> in CD<sub>3</sub>CN.

at  $\delta$  4.85 and methylene protons adjacent ester group at  $\delta$  4.60. However, the addition of other alkali metal ions was not changed the spectrum at all as shown in Figure 2.

In summary, three calix[6]arene bisbridged ligands were synthesized by the bridge reaction of 1,4-dialkylcalix[6]-arene with 1,3-bisbromomethylbenznene in the presence of cesium carbonate. X-ray structure analysis provide the 1,2.3-alternate conformation of ligand **3a**. Only ligand **3c** binds cesium ions weakly, presumably due to the 1,2.3-alternate conformation.

## Experimental Section

37,40-Dimethoxymethyloxy-38,39,-41,42-bis(o-xylyleneoxy)calix[6]arene (2a). To a solution of 0.5 g (0.69 mmol) of 1,4-methoxymethyl calix[6] arene (1a) and 1.8 g (5.5 mmol) of Cs<sub>2</sub>CO<sub>3</sub> in 400 mL of CH<sub>3</sub>CN was added 0.4 g (1.5 mmol) of 1,2-bis(bromomethyl)benzene. The mixture was refluxed for 24 h under an atmosphere of N<sub>2</sub>, and the solvents were removed. The residue was treated with CHCl3-H<sub>2</sub>O, and the organic layer was separated and removed under reduced pressure. The residue was triturated with MeOH, and the resulting white precipitate was removed by filtration and purified from column chromatography of the residue afforded 0.3 g (47%) of 2a. mp 264-267 °C: <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ7.31 (s, 2H. ArH). 7.16 (s, 6H. ArH). 6.92 (d. 8H. ArH. J = 4.77 Hz). 6.84 (m. 3H, ArH). 6.75 (m. 2H, ArH), 6.57 (m. 2H, ArH), 6.40 (m, 3H, ArH), 4.83 (br s, 8H, -OCH2-). 4.62 (br s, 4H. -OCH2-). 4.54 (d. 4H. ArCH2Ar. J = 16.95 Hz), 3.87-3.80 (m, 6H. ArCH<sub>2</sub>Ar). 3.25 (br s. 6H, -OCH<sub>3</sub>). 3.03 (d. 2H. ArCH<sub>2</sub>Ar. J = 14.19 Hz).

**37,40-Dibenzyloxy-38,39,-41,42-bis**(*o*-**xylyleneoxy)calix**-[6]arene (2b). Following the same procedure described for 2a, 0.24 g (39%) of 2b was obtained after column chromatography (eluent: chloroform). mp > 227 °C dec; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.37-7.23 (m. 12H, ArH). 7.02-6.40 (m. 24H, ArH), 4.41 (m. 6H. -OCH<sub>2</sub>-). 4.11 (m. 6H, -OCH<sub>2</sub>-), 3.86 (d, 4H. ArCH<sub>2</sub>Ar, *J* = 16.86 Hz) 3.49 (d, 2H, ArCH<sub>2</sub>Ar, *J* = 14.61 Hz) 2.92 (d, 2H, ArCH<sub>2</sub>Ar, *J* = 14.73 Hz): <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  155.68. 154.00, 138.16, 135.15. 134.37. 133.28, 130.70, 129.53, 128.40, 127.67, 127.33, 126.17, 123.81 and 123.21 (Ar). 73.60, 71.47 and 70.68 (-OCH<sub>2</sub>-), 30.87 and 27.14 (ArCH<sub>2</sub>Ar).

**37,40-Di(ethyloxycarbonyl)methyloxy-38,39,-41,42-bis-**(*o*-xylyleneoxy)calix[6] arene (2c). Following the same procedure described for 2a. 0.2 g (32%) of 2c was obtained after column chromatography (eluent: chloroform). mp > 261 °C dec; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.06-6.94 (m, 12H, ArH), 6.57 (t. 2H. ArH. *J* = 7.38 Hz). 6.39 (d. 4H, ArH, *J* = 6.39 Hz), 4.58 (t. 8H. ArOCH<sub>2</sub>- with *o*-xylene and ArCH<sub>2</sub>Ar. *J* = 16.7 Hz), 4.37 (d of broad, 8H, ArOCH<sub>2</sub>- with *o*-sylene and -OCH<sub>2</sub>COO-). 4.26 (q, 4H, -CO<sub>2</sub>CH<sub>2</sub>-). 3.95 (d, 2H, ArCH<sub>2</sub>Ar, *J* = 13.74 Hz). 3.82 (d. 4H, ArCH<sub>2</sub>Ar. *J* = 17.01 Hz). 3.03 (d, 2H. ArCH<sub>2</sub>Ar, *J* = 13.86 Hz). 1.29 (t, 6H. -CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  168.93 (CO<sub>2</sub>). 156.10. 155.99. 153.96. 136.28. 136.11. 132.36, 131.83, 130.46. 129.88, 129.33. 128.96. 128.79. 128.47. 128.00, 127.45, 123.92 and 123.48 (Ar). Notes

77.20, 73.64, 69.33 and 61.14 (-OCH<sub>2</sub>-), 32.12 and 31.59 (ArCH<sub>2</sub>Ar), 14.23 (CH<sub>3</sub>).

Acknowledgment. This work was supported by Ministry of Education of Korea (BK21 project). NMR spectra were taken at the Korea Basic Science Institute, Gwangju, Korea. This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2007-000-20245-0).

## References

- 1. Sieffert, N.; Wipff, G. J. Phys. Chem. A 2006, 110, 1106.
- Asfari, Z.: Wenger, S.: Vicens, J. Incl. Phenom. Mol. Recogn. Chem. 1994, 19, 137.
- Asfari, Z.; Wenger, S.; Vicens, J. Pure Appl. Chem. 1995, 67, 1037.
  Hill, C.; Dozol, J. F.; Lamare, V.; Rouquette, H.; Eymard, S.;
- Tournois, B. J. Incl. Phenom. Mol. Recogn. Chem. 1994, 19, 399.
- Asfari, Z.; Pulpoka, B.; Saadioui, M.; Wenger, S.; Nierlich, M.; Thuery, P.; Reynier, N.; Dozol, J. F.; Vencens, J. Mol. Recognit. Inclusion, Proc. 9th Int. Symp. 1998, 173.
- 6. Nucl. Waste News 1993, 13, 453.
- 7. Stedwell, M. J.; Burns, R. E. Chem. Eng. Prog. 1957, 53, 93.
- Ernest, M. V.; Bibler, J. P.; Whitley, R. D.; Linda Wang, N. H. Ind. Eng. Chem. Rev. 1997, 36, 2775.

- Khanehi, A. R.; Yavari, R.; Pourazarsa, S. K. J. Radioanal. Nucl. Chem. 2007, 273, 141.
- Aeungmaitrepiron, W.; Asfari, Z.; Vicens, J. Tetrahedron Lett. 1997, 38, 1907.
- Kleij, A. W.; Prados, P.; de Mendoza, J. Eur. Org. Chem. 2004, 2838.
- 12. Choe, J. I. Bull. Korean Chem. Soc. 2007, 28, 235.
- (a) Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681. (b) Ko, S. W.; Ryu, B. J.; Park, K. M.; No, K. H.; Kim, J. S.; Nam, K. C. Bull. Korean Chem. Soc. 2004, 25, 957.
- Kanamathareddy, S.; Gutsche, C. D. J. Am. Chem. Soc. 1993, 115, 6572.
- Chen, Y.; Li, J.; Xin, J.; Zhong, Z.; Gong, S.; Lu, X. Synth. Commun. 1999, 29, 705.
- Blanda, M. T.; Farmer, D. B.; Brodbelt, J. S.; Goolsby, B. J. J. Am. Chem. Soc. 2000, 122, 1486.
- Otsuka, H.; Araki, K.; Matsumoto, H.; Harada, T.; Shinkai, S. J. Org. Chem. 1995, 60, 4862.
- Lee, Y. J.; Ko, S. W.; Yeo, H. M.; Jeong, H. A.: Nam, K. C. Bull. Korean Chem. Soc. 2006, 27, 1227.
- Otsuka, H.: Suzuki, Y.; Ikeda, A.: Araki, K.: Shinkai, S. *Tetrahedron* 1998, 54, 423.
- 20. Nam, K. C.; Choi, Y. J.; Kim, D. S.; Kim, J. M.; Chun, J. C. J. Org. Chem. 1997, 62, 6441.