DOI QR코드

DOI QR Code

호이슬러 화합물 Co2MnSi에서 전자구조계산을 통한 에너지 간격의 원인에 대한 고찰

Investigation on the Origin of Band Gap in Heusler Alloy Co2MnSi through First-principles Electronic Structure Calculation

  • Kim, Dong-Chul (Department of Electrical and Electronics Engineering, Halla University) ;
  • Lee, Jae-Il (Department of Physics, Inha University)
  • 발행 : 2008.12.31

초록

호이슬러 구조의 대표적 반쪽금속인, $Co_2MnSi$에서 에너지 간격이 생기는 원인을 실제적인 전자구조 계산을 통해 검토하기 위해 호이슬러 구조에서 부분을 이루는 zinc-blende 구조의 CoMn과 하프 호이슬러 구조를 가진 CoMnSi, 그리고 가상적인 화합물인 $Co_2Mn$의 전자구조를 제일원리 방법을 통해 계산하였다. 각 화합물에서 계산된 상태밀도를 이용하여 띠 혼성이나 에너지 간격 등을 고찰한 결과 $Co_2MnSi$에서 에너지 간격이 생기는 원인이 Galanakis 등이 설명한 방식이 그대로 적용되지 않았으며, Si 원자의 역할 또한 중요함을 알게 되었다. 각 화합물에서 얻은 다수스핀과 소수스핀 전자수를 통해 이들 화합물의 자성도 고찰하였다.

In order to investigate the origin of the band gap in the half-metallic Heusler alloy, $Co_2MnSi$, through the electronic structure calculation, we have calculated the electronic structures for the compounds consisted of parts of Heusler structures, i.e. zinc-blende CoMn, half-Heusler CoMnSi, and artificial $Co_2Mn$, using the full-potential first-principles band calculation method. By investigating the band hybridization and energy gap for the calculated density of states for these compounds, we found that the the origin of the band gap is not consistent with the explanation discussed by Galanakis et al. We have also discussed the magnetism for these compounds by the calculated number of majority- and minority-spin electrons.

키워드

참고문헌

  1. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, 2024 (1983) https://doi.org/10.1103/PhysRevLett.50.2024
  2. R. J. Solen Jr., et al., Science, 282, 85 (1998) https://doi.org/10.1126/science.282.5386.85
  3. H. Gato, T. Okuda, Y. Okimoto, Y. Tomooka, K. Oikawa, T. Kamiyama, and T. Tokura, Phys. Rev. B, 69, 184412 (2004) https://doi.org/10.1103/PhysRevB.69.184412
  4. T. Shishidou, A. J. Freeman, and R. Asahi, Phys. Rev. B, 64, 180401 (2001) https://doi.org/10.1103/PhysRevB.64.180401
  5. I. Galanakis, Phys. Rev. B, 66, 012406 (2002) https://doi.org/10.1103/PhysRevB.66.012406
  6. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66, 174429 (2002) https://doi.org/10.1103/PhysRevB.66.174429
  7. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys., 39, 765 (2006) https://doi.org/10.1088/0022-3727/39/5/S01
  8. J. E. Pask, L. H. Yang, C. Y. Fong, W. E. Pickett, and S. Dag, Phys. Rev. B, 67, 224420 (2003) https://doi.org/10.1103/PhysRevB.67.224420
  9. H. Akinaga, T. Manago, and M. Shirai, Jpn. J. Appl. Phys. Part 2, 39, L1118 (2000) https://doi.org/10.1143/JJAP.39.L1118
  10. J. H. Zhao, F. Matsukura, K. Takumura, E. Abe, D. Chiba, and H. Ohno, Appl. Phys. Lett., 79, 2776 (2001) https://doi.org/10.1063/1.1413732
  11. K. Kim, S.-J. Kwon, and T.-W. Kim, Phys. Stat. Sol. (b) 241, 1557 (2004) https://doi.org/10.1002/pssb.200304580
  12. P. J. Brown, K. U. Neumann, P. J. Webster, and K. R. A. Ziebeck, J. Phys. Condens. Matt., 12, 1827 (2000) https://doi.org/10.1088/0953-8984/12/8/325
  13. P. J. Webster, J. Phys. Chem. Solids, 32, 1221 (1971) https://doi.org/10.1016/S0022-3697(71)80180-4
  14. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  15. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  17. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  18. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  19. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1997) https://doi.org/10.1088/0022-3719/10/16/019