DOI QR코드

DOI QR Code

Estimation of Mean Residence Time using Soil Moisture at a Hillslope on the Forested Catchment

산림 사면에서 토양수분을 이용한 물 평균체류시간 추정

  • 진성원 (부산대학교 대학원 환경공학과) ;
  • 김상현 (부산대학교 환경공학과)
  • Published : 2008.12.31

Abstract

The mean residence time is the time scale for intermediate status between infiltration and runoff and one of the critical factors for understanding runoff response, erosion, and eco-hydrological processes. This research explored a direct method to estimate the mean residence time over existing indirect, isotope tracer method. Spatial and temporal distributions of soil moisture have been monitored for a year with 2-hours monitoring interval. Mean residence time for soil moisture showed apparent increasing tendency to deeper depth and decreasing trend during summer periods, which had intensive rainfall events. The mean residence times obtained from this research showed similar trend to those obtained from other isotope methods, which means the direct method can be an efficient approach to obtain the mean residence time.

유역에서 물의 평균체류시간은 강우에 의해 토양에 강우 등으로 인해 수분이 침투하여 유출되기까지 소요되는 평균 시간이며, 침식, 식생분포, 유출기작 등을 지배하는 수문학적 과정을 이해하는데 중요한 요소이다. 물의 평균체류 시간을 산정하는 대표적인 방법인 방사성 동위원소에 의한 추적자법은 계산과정이 복잡하고 많은 비용이 들면서도 간접적인 방법임으로, 본 연구에서는 토양수분의 거동을 관측해 산지사면에서 물의 평균체류시간을 산정하는 보다 직접적인 방법을 고안하였다. 토양수분의 측정을 위해 광릉 국립수목원에 위치한 산림 소유역에 토양 수분 측정장비인 TDR을 설치하고 1년 동안 2시간 간격으로 깊이별 측정을 수행하였다. 토양수분을 이용해 산정된 물의 체류시간은 대상유역의 불투수 지하면에 가까워질수록 상승하는 경향을 보였고 강우가 집중된 여름에 가장 짧은 것으로 나타났다. 실험에서 얻어진 평균체류시간은 기존의 화학적 방법을 통해 산정된 값과 유사한 경향을 보였는데 이러한 결과들은 토양수분의 측정과 분석을 통한 방법이 방사성 동위원소를 이용한 방법보다 더욱 효율성 있는 측정을 할 수 있다는 것을 나타낸다.

Keywords

References

  1. Aggarwal, P.K. (2002). "Isotope hydrology at the International Atomic Energy Agency." Hydrological Processes, Vol. 16, No. 11, pp. 2257-2259 https://doi.org/10.1002/hyp.5043
  2. Chow, V.T., Maidment, D.R., Mays, L.W. (1988). Applied Hydrology. McGraw-Hill, pp. 4
  3. Dune, T., Leopold, L.B. (1978). Water in Environmental Planing. Freeman and Co, San Francisco
  4. Gibson, J.J., P. Aggarwal, J. Hogan, C. Kendall, L.A. Martinelli, W. Stichler, D. Rank, I. Goni, M. Choudhry, J. Gat, S. Bhattacharya, A. Sugimoto, B. Fekete, A. Pietroniro, T. Maurer, H. Panarello, D. Stone, P. Seyler, L. Maurice-Bourgoin, A. Herczeg. (2002). “Isotope studies in large river basins: a new global research focus." Eos Trans, AGU, Vol. 83, pp. 616 https://doi.org/10.1029/2002EO000415
  5. Hooper, R.P. (2004). "Designing observatories for the hydrologic sciences." Eos Trans, AGU, Vol. 85, Jt. Assem. Suppl., Abstract H24B-04
  6. Hornberger, G.M., T.M. Scanlon, and J.P. Raffensperger. (2001). "Modeling Transport of dissolved silca in a forested headwater catchment: the effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship." Hydrological Processes, Vol. 15, pp. 2029-2038 https://doi.org/10.1002/hyp.254
  7. Kendall, C., E.A. Caldwell. (1998). "Fundamentals of isotope geochemistry." Isotope Tracers in Catchment Hydrology, Edited by C. Kendall, J.J. McDonnell, Elsevier Science Science B.V., Amsterdam, pp. 51-86
  8. Lewis, S., A. Nir. (1978). "On tracer theory in geophysical systems in the steady and non-steady state-part II: non-steady state-theoretical introduction." Tellus, Vol. 30, pp. 260 https://doi.org/10.1111/j.2153-3490.1978.tb00841.x
  9. Lull, H.W. (1964). "Ecological and Silvicultural Aspects." Handbook of Applied Hydrology, Edited by V.T. Chow, McGraw-Hill, Chapter 6, New York
  10. McGuire, K.J., J.J. McDonnell, M. Weiler, C. Kendall, B.L. McGlynn, J.M. Welker, J. Seibert. (2005). "The role of topography on catchment-scale water residence time." Water Research, Vol. 41, No. 5, pp. W05002.1-W05002.14 https://doi.org/10.1029/2004WR003657
  11. Niemi, A.J. (1978). "Residence time distribution of variable flow processes." International Journal of Applied Radiation and Isotopes, Vol. 28, pp. 855-860 https://doi.org/10.1016/0020-708X(77)90026-6
  12. O'Callaghan, J.F., D.M. Mark. (1984). "The extraction of drainage networks from digiral elevation data." Computer Vision, Graphics and Image Processing, Vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  13. Quinn P.F., K.J. Beven., R. Lamb. (1995). "The in $(a/tan/{\beta})$ index, How to calculate it and how to use it within the TOPMODEL framework." Hydrological Processes, Vol. 9, pp. 161-182 https://doi.org/10.1002/hyp.3360090204
  14. Rodhe, A., L. Lyberg, and K. Bishop. (1996). "Transit time for water in a small till catchment from a step shift in the oxygen 18 content of the water input." Water resour. Res., 32, pp. 3497-3511 https://doi.org/10.1029/95WR01806
  15. Uchida, T., Mcdonnell, J.J., Yuko. A. (2006). "Functional interconparison of hillslopes and small catchments by examining water sourece, flowpath and mean residence time." Journal of Hydrology, Vol. 327, pp. 627-642 https://doi.org/10.1016/j.jhydrol.2006.02.037
  16. Vitvar, T., J. Gurtz. B. Lawrence, J.J. McDonnell, D.M. Wolock. (2002). "Estimation of baseflow residence time in watersheds from the runoff hydrograph recession: method and application in the Neversink watershed, Catskill Mountains, New York." Hydrological Processes, Vol. 16, No. 9, pp. 1871-1877 https://doi.org/10.1002/hyp.5027
  17. Ventrella, D., Losavio, N., Vonella, V., Leij, F.J. (2005). "Estimating hydraulic conductivity of a fine-textured soil using tension infiltrometry." Geoderma, Vol. 124, pp. 267-277 https://doi.org/10.1016/j.geoderma.2004.05.005
  18. Walker, J.P., G.R. Willgoose, J.D. Kalma. (2004). "In situ measurement of soil moisture: A comparison of techniques." Journal of Hydrology, Vol. 293, pp. 85-99 https://doi.org/10.1016/j.jhydrol.2004.01.008
  19. Zuber, A. (1986). "On the interpretation of tracer data in variable flow system." J. Hydrol, Vol. 86, pp. 45-57 https://doi.org/10.1016/0022-1694(86)90005-3