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Asymptotic Consistency of Least Squares Estimators
in Fuzzy Regression Model!

Jin Hee Yoon', Hae Kyung Kim?, Seung Hoe Choi®

Abstract

This paper deals with the properties of the fuzzy least squares estimators for
fuzzy linear regression model. Especially fuzzy triangular input-output model in-
cluding error term is proposed. The error term is considered as a fuzzy random
variable. The asymptotic unbiasedness and the consistency of the estimators are
proved using a suitable metric.

Keywords: Fuzzy least squares estimators; asymptotic unbiasedness; asymptotic
consistency.

1. Introduction

The least squares method is the most widely used statistical technique to find the
unknown parameters of regression model. But there are many situations where obser-
vations cannot be described accurately. To record these data, we need some approach
to handle the uncertainty. Zadeh (1965) first introduced the concept of fuzzy sets to
explain such uncertainty or vagueness. Tanaka ef al. (1982) introduced fuzzy concept
to regression analysis. Diamond (1988) introduced fuzzy least squares estimations for
triangular fuzzy numbers. He considered two types of fuzzy linear regression models:
the fuzzy input-output regression model and the crisp input, fuzzy output model. Af-
ter that many authors have addressed and attempted to resolve the fuzzy least squares
problems. But many studies have emphasized the fuzziness of the response alone, so they
deal with crisp input, fuzzy output model. Some authors have discussed the situation in
which both the response and the explanatory variables are fuzzy (Celming, 1987; Sakawa
and Yano, 1992; Yang and Lin, 2002; Yang and Liu, 2003). A common characteristic
of these studies is that the regression coefficients were treated as fuzzy numbers. But
this approach has a weakness because the spread of the estimated responses widens as
the magnitude of the explanatory variables increases, even though the spreads of the
observed responses remain roughly constant, or even decrease. So some authors have
been studying the fuzzy input-output model with crisp parameters, not fuzzy parame-
ters, of the model (Diamond, 1988; Diamond and Koérner, 1997; Kao and Chyu, 1989;
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Kao,and Chyu, 2003; Choi et al., 2000; Ming et al., 1997). Two situations also arise,
which have been studied in such models. The first situation involves the fuzzy regression
model without error structure. The other is that an error structure exists in the models.
When the data have an error structure which is assumed in the model, Diamond (1989)
and Korner and Nather (1997, 1998) introduced fuzzy BLUE. Kim et al. (2008) proved
some asymptotic properties using suitable assumptions for error terms. Chang and Lee
(1994), Kao and Chyu (1989, 2003) also introduced error term in the fuzzy regression
model. Here is the fuzzy linear regression model with error term which is considered as
a fuzzy random variable.

Yi=B8o+5Xa+ - +68pXip+®;, i=1,...,n, (1.1)
where X, Y;(i = 0,1,...,n) are triangular input-output fuzzy numbers respectively,
Bi(i = 0,1,...,n) are crisp parameters and error terms ®;(i = 1,...,n) are assumed to

be fuzzy random variables. We restrict the model into following simple case.

Y=06+5X;+®;, i=1,...,n (1.2)

2. Mathematical Preliminaries

In this section, we introduce some definitions and theorems that will be needed in
our study.

Definition 2.1 Let U be a set. A fuzzy subset X in U is a set of ordered pairs:
X ={(z, ux(z)) |z €U},

where px is a function from U to the closed interval [0,1]. Here, ux is said to be the
grade function. px(z) is called the grade of z in X.

A more general and even more useful notion is that of an a-level set.

Definition 2.2 The (crisp) set of elements that belong to the fuzzy subset X in U at
least to the grade « is called the a-level set of X:

X*={zeUlux(z) 2 a}.

Definition 2.3 A fuzzy number X, denoted by X = (myx, Ix, rx)Lr, is called LR-fuzzy
number, if it has the following grade function:

X
_ - f € R, 2.1
px(z) R(M), if mx <z <mx+rx, o 21
rx
0, otherwise,

where myx € R, [x, rx > 0 and L, R are fixed left-continuous and non-increasing func-
tions L, R:[0,1] — [0,1] with R(0) = L(0) = 1 and R(1) = L(1) = 0. Here, L and R
are called left and right shape functions of X, respectively.
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The point mx is said to be mode and lx,rx are left, right spread of X, respectively. We
denote the space of L R-fuzzy numbers as Fpp(R).

Definition 2.4 An LR-fuzzy number X is a triangular fuzzy number if L, R are of the

form W ¢
1|z, ifo0<z<1,
T(z) = { 0, otherwise, forxeR (2.2)

and we denote X = (mx, lx, rx)r, or briefly X = (mx, Ix, rx) is said to be triangular.
We denote 7 (R) is the space of triangular fuzzy numbers.

We introduce the extension principle by Zadeh (1965).

Definition 2.5 Let U be a Cartesian product Uy X - - - X U,. of universes Uy, ..., U, and
let Xi,...,X, be r fuzzy subsets in Uy,...,U,, respectively. f is a function from U to
a unverse V, y = f(x1,...,2,). Then the extension principle allows us to define a fuzzy
subset Y in V by

Y“—“{(y, /"‘Y(y)) |y=f(x1,...,xr), (Il,'--amr‘) € U}

and

sup  min{ux,(z1), ., px (2}, i F7HY) A0,
My(y) = (Z1,eees z)EF~1(y)

0, otherwise,

where f~! is the inverse of f.
Using the extension principle, we define operations on the fuzzy number space.

Definition 2.6 Let X and Y be fuzzy numbers with grade functions ux and py, re-
spectively. Addition X + Y of X and Y is defined and its grade function is defined
by
pxy(2) = sup min{ux(z), py(y)} (2.3)
TTYy==2
According to the preceding definition for addition of fuzzy numbers, we can show
that pxiy(z) = sup,eg min{px(t), py(z —t)}. We can regard 2X as X + X. So,
pax(2) = sup,er min{ux (t), px(z —t)}. We can easily show that pox(z) = ux(2/2).
The positive integer scalar product of X is led by p.x(z) = px(z/¢). So, the following
definition is well defined.

Definition 2.7 Let X be a fuzzy number with grade function px and ¢ be a non-zero
scalar. Scalar multiplication ¢X of ¢ and X is defined and its grade function is defined
by

pex(z) = px (%) - (2.4)

For LR-fuzzy numbers, the L R-shape is preserved by addition and scalar multiplica-
tion operations. That is, let X; = (m;, l;, 7)Lr, © = 1,2,...,n, be LR-fuzzy numbers
and ¢ be a scalar. Then

X+ X4t X = (e, Yok 3o (2.5)
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(emy, cls, cri) LR, ife>0,
cX; = (emy, —cry, —cli) R, ife<O, (2.6)
(0, 0, 0)Lr = {0y, if c=0.

Here 14 is the indicator function of a set A. So, for ¢; > 0 and ¢z > 0, we get
ci{ma, l1, T1) LR + c2{ma, Iz, T2)Lr = (1M1 + cama, c1lh + calo, e171 + cam2d R (2.7)

Definition 2.8 Let z be a point in R™ and A be a nonempty subset of R*. We define
distance d(z, A) from z to A by

d(z,A) = inf{||z — a|| : a € A}.

Definition 2.9 Let A and B be subsets of R". We define Hausdorff separation of B
from A by
di (B, A) =sup{d(b,A) : b € B}.

Let A and B be subsets of R™. Hausdorff Metric dy is defined by
du = max{dy (4, B), dy;(B, A)},

where nonempty A and B are in R™. Or equivalently,
dg = max ( sup inf ||a — b|, sup inf ||la — b|| ) .
s = max (sup - o, sup i~ )

Let Fo(R™) denote the set of all fuzzy subsets in R™.
Definition 2.10 We define d,, on Fo(R") by
1 »
dp = [/ du(A“, B"‘)”da] ,
0
for all A,B € Fp(R™"), 1 <p < co.

Diamond and Kloeden (1994) introduced the concept of support function. Let X €
R™. The support function s : S”"~! x I — R is defined by

s(AA)=sup{< A, z>: A€ S, z € A},

where S™71 is the (n — 1)-dimensional unit sphere of R™ and < -,- > is the inner product
of the Euclidean space R™. Then an element A € R™ is uniquely characterized by its
support function.

Support functions may be used to define an following Ly-metric.

Definition 2.11 For A, B € R™, we define an extended L,-metric on R as follows:

D2(A,B) = /S A = sy B)]dx. (2.8)
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For compact intervals, the metric Dy takes an especially simple form because the
support function is defined at just two points, —1 and 1.
Diamond (1988), Diamond and Kloeden (1994) introduce following metric in 7 (R).

Definition 2.12 For A, B € T(R), define
d*(X,Y) = D} (suppX, suppY) + [m(X) — m(Y)]*, (2.9)

where suppX denotes the compact interval of support of X and m(X) its mode.

IfX =(z,&,€),Y =(y,n',n"), then

X, Y)=[z—y— & -] +[z-y+E -7+ @ -y (2.10)

In this paper, we use the metric d(,-) in Definition 2.12.

One of the most general definition of a fuzzy random variable is made by Puri and
Ralescu (1986). We digest expected value and variance of a fuzzy random variable which
are defined by Puri and Ralescu (1986) and Korner (1997), respectively.

Let (2, A, P) be a probability space and let U be a random variable defined on the
space. Consider a partition {W; : ¢ € J} of R, where W; is an interval of the real line
and J is a finite or countable index set. Then for each w € €2, there is only one ¢ € J
such that U(w) € W;.

We define the perception of a fuzzy random variable X as the mapping X : Q —
Fo(R) given by w — X,,. Here X,, = Iw, if and only if U(w) € W;, where Iy, is the
indicate function. The mapping X : Q — Fy(R) characterizes a special type of fuzzy
random variables. The random variable U is called an original of the fuzzy random
variable X. Corresponding to a given fuzzy random variable, there may exist a lot of
originals.

Now, we generalize the concept of the fuzzy random variable. The definition was
given by Puri and Ralescu (1986).

Definition 2.13 Let (©, A, P) be a probability space. A fuzzy random variable (f.r.v.)
is a function X : Q — Fy(R™) such that

{(w,z):z€ X¥w)} € Ax B, (2.11)

for every a € [0, 1], where B denotes the Borel subsets of R* and X* : Q — P(R") is
defined by
X w) ={z e R™ : px(,)(z) > a}. (2.12)

A set valued function F : Q — P{R™) is called integrably bounded if there exists a
function h : Q@ — R, h € L*(P) such that ||z|| < h(w) for all z, w with z € F(w). Here
LY(P) denotes a family of all functions h : @ — R which are integrable with respect
to the probability measure P. A fuzzy random variable X is called integrably bounded
if X is integrably bounded for all o € [0, 1], that is, if for any « € [0,1], there exists
h, € L'(P) such that ||z|| < ha(w) for each 2, w with z € X*(w).

For a fuzzy random variable X : Q@ — Fy(R), we define mappings z, and z as

z,(w) = inf X*(w) and zJ¥(w) = sup X*(w) for all & € (0,1) and all w € Q. Then
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they are A — B measurable functions. That is, these mappings z, and z} are random
variables.

On the other hand, let 2=, 2™ and =7 be crisp random variables such that r (w) <
t™w) < z¥(w) for each w € Q. Then X : @ — Frr(R) with X(w) = (z™(w),
t™w) — 27 (w), zt(w) — 2™(w))Lr is a fuzzy random variable. X(w) is a LR-fuzzy
number. These fuzzy random variables are said to be LR-fuzzy random variables. Let
(€2, A, P) be a probability space where the probability measure P is assumed to be
non-atomic.

A set-valued function is a function F : @ — P(R™) such that F(w) # @ for every
w € . By L}(P) we denote the space of P-integrable function f : 8 —» R". We denote
by S(F) the set of all L!(P) selection of F, that is,

S(F)={f e L}P): flw) € F(w) a.e.}.

The Aumann integral of F is defined by

(A)/F={/QfdP:f€S(F)}.

We define the expected value E(X) of a fuzzy random variable X : @ — Fo(R") in
such a way that the following conditions are satisfied:

E(X) € Fo(R™),

{z € R: pgx)(x) = a} = (4) /X"‘, for each a € [0,1].

Puri and Ralescu (1986) showed that under certain assumption, there is a unique
fuzzy subset satisfying these requirements.

We use the preceding proposition to define the expected value of a fuzzy random
variable X : Q@ — Fo(R™) which is integrably bounded.

Definition 2.14 The ezpected value of X, denoted by E(X) is the fuzzy subset v €
Fo(R™) such that {z € R: p,(x) > o} = (A) [ X for every a € [0,1].

If mx, Ix, rx are crisp random variables satisfying that lx, rx are non-negative
random variables, then we can easily check that the LR-fuzzy number variable X =
(mx, Ix, rx)Lr is a fuzzy random variable. On the contrary, let X : Q@ — FLgr(R) be a
LR-fuzzy random variable, denoted by X = (mx, lx, rx)rr. Consider the set {(w, z) :.
z € X' (w)}, where X1 (w) is 1-level set of the fuzzy set X (w). Since X is a fuzzy random
variable, the preceding set is A x B-measurable set, that is {(w, z) : z € X}(w)} € Ax B.
We know that for each w € , X*(w) is singleton because X is a LR-fuzzy number. So,
mx(w) = ,, where z, € X'(w). Then mx is a B-measurable function, i.e. it is a
random variable from  to R. According to the same method we can easily show that
lx and rx are random variables.

Consequently, every LR-fuzzy random variable can be represented by a LR-fuzzy
number function such that the mode, left and right spreads are constituted by crisp ran-
dom variables. We can say again that a L R-fuzzy number function X = (mx, Ix,7x)Lr
is a fuzzy random variable if and only if mx, Ix and rx are crisp random variables and [ x
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and ry are non-negative. Using the definition for the expected value of a fuzzy random
variable, we lead some properties of the expected value of a LR-fuzzy random variable
X.

Theorem 2.1 If X : Q@ — Fr(R) is a LR-fuzzy random variable, denoted by X =
{mx, lx, rx)Lr, then the expected value of X is that

EX = me, Elx, E’I‘X . 213)
LR

Proof: To show it, we claim that the a-level set [E(X)]® of EX is equal to the a-level
set of the L R-fuzzy number {( Emyx, Elx, Erx )LR.

First we remark that the a-level set of the LR-fuzzy number ( Emyx, Flx, Erx )Lr
is represented by the following closed interval:

[E(mx) — E(lx)L™ (), E(mx)+ E(rx)R™ (o) ].
Now, we lead a-level set [E(X)]® of E(X). By the definition, [E(X)]* = (A) [ X*dP
for each . Since X(w) = (mx(w), Ix(w), rx(w)>LR,
X*w) = [mx(w) = Ix (W)L (), mx(w) + rx(w)R Y (a)]. (2.14)

By equation (2.14), we know that

(A)/X"‘:{/QfdP:feS(X”)}.

So, (A) J/ X* must be a closed interval by the equation. The left bound of the close
interval is that E(myx — IxL71(c)) and the right bound is that E(mx + rxR™(a)).
Thus we can conclude that

[E(X)]* = [E(mx) ~ E(Ix)L (), E(mx)+E(rx)R™'(a)].
Our proof is completed. O

Definition 2.15 Let X : Q@ — F¢{R") be a fuzzy random variable with expected value
E(X), where F¢(R™) be the family of all normal compact convex fuzzy subsets of R™.
We define a variance of the fuzzy random variable X with respect to an metric Dy as

follows:
Var(X) = EDs(X, E(X))?, (2.15)

where Ds(-,-) is a metric in Fo(R"™).

Definition 2.16 Let X;, X3,... be a sequence of fuzzy random variables. A sequence
of fuzzy estimates T,(X1, Xo,...,Xn) = T, will be called weak consistent for a fuzzy
parameter © if

T, 50 asn— oo (2.16)
We recall that
T, -£5©  if and only if Pld(T,,0)>€]—0 asn — oo, (2.17)

for any non-negative real number e.
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Definition 2.17 A fuzzy estimate © of a fuzzy parameter @ is said to be unbiased for

e if

Ee (é) = 0. (2.18)
Theorem 2.2 (Weak Law of Large Numbers: WLLN) Let X3, X5,..., X, be
uncorrelated random variables which satisfy EX; = 4 and VarX; <c< oo (i=1,...,n)
for some positive constant c¢. And let S, = X; +---+ X,,. Then
@ £,0 inI? asn — . (2.19)
i.e.,

1 P .
~S, —u inL? asn — oo.
n

Proof: See Rohatgi (1979). d

3. Asymptotic Optimal Properties

We assume that X;, Y; are triangular fuzzy numbers for ¢ = 1,...,n. We represent
that Y; = (v, 7, 0 ), where y; is the mode, 7} is the left spread and 7 is the right
spread of Y;. And we also represent that X; = (z;, 514, €r), where z;, L €7 are the
mode, left and right spreads of X; respectively. ®; (¢ = 1,...,n) which are assumed to
be the fuzzy random variables are the fuzzy errors for expressing randomness. So, we
express as that ®; = (e;, 6, 7). And ¢;, 6, 87 are also represent mode, left and right
spreads of ®; respectively. We regard ¢;, 6}, 67 as crisp random variables. Throughout
this paper, we will use following assumptions.

Assumption 3.1
(A1) ¢; are i.i.d. r.v.’s with E[e;] = 0 and Varle;] = 02(< 00).
(A2) 67, 6! are nonnegative r.v.’s with E[07] = m,., E[0}] = m; and Var[¢]] = o%(< 00),
Var[6l] = o7(< 00), Cov(0}, 85) = 0 and Cov(6;, 6%) = 0 for i # j.

(A3) €;, 67 and 6! are mutually uncorrelated.

3.1. Estimating the parameters

To find the estimators, we want to minimize following objective function:

Q(Bo, B1) = Y &*(Bo + 51 X, Yi). (3.1)

i=1
And two cases must be considered:
Case I: 8; > 0.
In this case, Q(Bo, 31) is given by

Q(Bo,B1) = > {Bo+ Brzi —yi — (Bl — 775)}2

g=1
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+ {Bo + Brzi — i + (Bi€] — 1) + (Bo + Buzi — i) (3.2)

And the unique solution, ﬂ;}“, ﬁ;*, which minimize above expression are founded by
solving 8Q/88p = 0 and 8Q/86; = 0. Namely,

n n

3nBy + b1 Z (Bz;+¢& - &) = 2(3%‘ +nf — i),

i=1 1=1
n

{ B (Bri+& -E)+6) {w? + (2 + &)+ (2 - 65)2} (3.3)

i=1 i=1
n

=5 {(@i~€) (i —n) + (@ + &) (i + ) +zws}-

\ =1

The solution to above system is denoted by (ﬁ%, ,83“). And we can easily find that:

.. AD- BC . AB-3nD
+ 2 = +:________
b =g ™ A= e

where A = Y0 (3z; +£ — €1, B=Y1_ By +n] —n}), C = 31 (327 +22:€] —
22,6+ €2+ €2) and D = 31 (@i — &) (ye — ) + (@i + &) (ws +0f) + zayi].

Case II: 3; < 0.
In this case, @(Bg, 51) is given by

Q(Bo, Br) = (Bo+ iz — ys + Br&] + L)’
+{Bo + Brzi — i — (K& + 77{)}2 + (Bo + Brzi — ui)> (3.5)

And the unique minimizing solution is derived by following linear system.

(3.4)

n n

3nfo+ By Bz +& —&) =) Bui+nf —ni),

i=1 i=1
n

Bo S (i +& — &)+ 6> {aP + (@i + &) + (- €)"} (3.6)

i=1 i=1
n

= Z{(%‘Jrfir) (i — ) + (2 — &) (ws + 7)) + Taws } -

\ =1

The solution to above system is denoted by (ﬂAO_, ﬁ}) We can also easily find that:
-~ AD'— BC - AB-3nD’

Bo = A? —3nC and By = A2 —3nC’

where D' = Y0, [(zi + &) (i — nb) + (2 — €y + ) + zayil.

If the solution to this system satisfies 8, > 0, then it is not acceptable. i.e., it is
not a solution to the minimize problem.

(3.7)

Proposition 3.1 The numbers /3A1+ and ﬂ;‘ defined previously, satisfy ,BAfL > ﬁ;‘.
Proof: See Diamond (1988). O
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3.2. Asymptotic unbiasedness

To prove asymptotic properties, we use following Assumption 3.2 in addition to As-
sumption 3.1.

Assumption 3.2

(B1) Zz V(@] —z:€l) —0and Y (&7 —¢) —»0asn— oo.

(B2) 22 — T converges to some positive constant as n — oo.
3)

(B

(B4) £ > C; >0 and & > C, > 0 for some positive constants C; and Cs.

(m €72 — my€2 ) — 0 and (M;€2 — m,€2 ) - 0 as n — oo.

(B5) f_T/ﬁW — 0 and ?/Ef?‘ — 0 as n — 0o. The overline notation means that T =
/n¥l z, &r=1/nY - € and so on.

Theorem 3.1 Under the Assumptions 3.1 and 3.2, the expectations of fuzzy least squ-
ares estimators are given by

() =Fne  F@) =T ©9)
and A AF' — CE ~ AFE — 3nF’
B(f) = —me  B() = e (39)

where E = n[387 + B (3T + I) + L], F = n[f5 (3% +I) + 5} (322 + 2K + J) + LT +
m&" +mi€l], F' = n[B; (3T + I) + B; (322 + 2K + J) + LT — (m, &l + mE)), I =
E_T_gl’ng'rQ_l_El?, K=:r§’"—:c§l and L = m, —my.

Proof: Consider the normal equation (3.3) and take expectations to the each equation
of (3.3). If we take each sides of the model Y; = By + 81 X; +®; to triangular components,
the mode and spreads of Y; can be denoted by y; = 85 + B z; + €;, 0l = B¢ + 6! and

= B¢ + 07 in Case I. Then E(y;) = 83 + 87 z; from (A1) and E(n}) = B €} + my,
Emr) =6t ET +m, from (A2). After taking expectatlons the left sides of the equations
will do not changed except E(ﬁo) and E(/B1 ) and the right sides will be changed to
E = E(B) and F = E(D) respectively. And with previous notations, the equations can
be denoted by followings:

3nE (ffg) + AE (ﬁf) —E, 610

- - 3.10
AE (65) +CE(6) =F

If we solve above system (3.10), we can easily find (3.8). For Case II, we get F’ = E(D’)

from E(n}) = =7 & +my and E(n}) = —B7 €l +m,. And we can get (3.9) if we replace
F with F' = E(D’) in (3.10). O
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Theorem 3.2 Under the Assumptions 3.1 and 3.2, the fuzzy least squares estimators
ﬂg and 37 are asymptotic unbiased estimators for ﬂg and ﬂf . i.e.,

E(ﬂa‘) — B4 and E(ﬁ}) — B as n— oo.
Proof: Consider A2 — 3nC is n2(3% + I)? — 3n%(322 + 2K + J). And
AF - CE =n*(38+ D) {#f (32 + )+ Bf (327 + 2K +J) + Lz + (mT57+m,57)}

—n? (327 + 2K + J) {36 + 67 (37 + 1) + L}

B (A% - 3nC) + nQ{LZf Bz+1)+ 3T+ 1) (m,ZF + mﬁ{l)

—L(3F+2K+J) }

After some calculations, the second term will be of the form n?{LI" + (mrﬁ_r2 + m1272)}
for some I'. And A? — 3nC will be of the form n?{IT+ (E—’“Q +§2)} for some II. The above
[ and IT have same degrees, thus the convergence is up to (m,FQ - ml§2) / (5_'2 + 272).
Now, since we have (B3) and (B4), (m@72 - m@z)/(g_r? + 52) converges to 0 as n — 0.
Therefore, E(ﬂ:’{) — 3 when n — oo.

For E(fy), AE—3nF = n?(32+1){36; +67 (3z+1)+L}—3n>{} (3T+1)+6 (322 +
2K +J)+ Lz +(m,£7+m€')} = B (A2 —3nC)+n?{LI-3(m, £ +m;¢!)}. With (B1), the
convergence of E(ﬂ}) is up to the convergence of (k1&" + kz€!)/(ks€™2 + kéfw) for some

constants ki, ...,ks. And it is converges to 0 by (B5) as n — oo. i.e., E(8]) — B as
n ~» 00. Thus, our proof is completed. a

Theorem 3.3 Under the Assumptions 3.1 and 3.2, the fuzzy least squares estimators
ﬂo and ﬂl are asymptotic unbiased estimators for 3; and f; . i.e.,

E(ﬂg) — By and E(,Bl“) — 37 as n— oo.
Proof: Consider AF’ —CE = n2(3z+ {8y (3T+ 1)+ 87 (322 +2K + J)+ LT — (m,.& +
mi€n)} ~ n?(3z2 + 2K + J){3685 + B (3T + 1) + L} = (A2 — 3nC) + n?{Lz(3T +
I) — (3% + I)(m,& + mi€") — L(3z? + 2K + J)}. Thus E(ﬂo) — fg when n — oo
by the same assumptions (B3) and (B4) as Theorem 3.2. And AE — 3nF' = n%(37 +
D{365 +B7 (87 + 1)+ L} = 3n* {5 (3T +1)+ B} (322 +2K + J) + LT~ (m, £ +mi€7)} =

By (A% - 3nC) +n?{LI+3(m,& +m€")}. With (B1) and (B2), (ﬁl ) — B7 asn — 00
by the same assumption (B5) as Theorem 3.2. 0

3.3. Asymptotic consistency

To prove consistency, we use Theorem 2.2, the WLLN(Weak Law of Large Numbers).
Proposition 3.2 By WLLN, following properties hold with (A1)-(A2) as n — oo.
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1 = P ]. i 1 P
P3) — 67 - d - o: .
)nizzlz—wn an n;l_)ml

n n
1 r P _ 1 1 P _
) — z;0; — Zm, and — z;0; — Tmy.
n 4 n“

1 n n
(P5) - Z e&r 250 and ;11—; el 0.

i=1
1 <& P 1< P
r s = NN

P6) ;;91‘& — £™m, and nizzlﬁlfi Elmy.

Proof:

(P1) By (Al) and (A2), each ¢; has finite Variance and €{i = 1,2,...,n) are un-
correlated. So, 3t e —EQ e)}/n Ly 0as n > by WLLN. i.e.,
1/n¥ 0 & il 1/nE(3 - €&)=0 as n— oo.

(P2) Similarly, with the same assumptions as (P1), 1/n > | z;€; 1 InE(3 " mi€;)
= 1/nz;Fe; = 0 as n — oo by WLLN.

(P3) By (A2), each 47 and 6! has finite variance and by (A2), 67(:i = 1,2,...,n) are
uncorrelated and so are 6i(i =1,2,...,n). So, 1/n3 ;67 i 1/nE(Q 07) =
m, and 1/n ", 0! 55 1/nE(YT, 95) my as n — oo. by WLLN.

(P4) Similarly, with the same assumptions as (P3), 1/n >0, 207 21 /nE( x:67)
=7%m, and 1/n) ., 6 £, 1/nE(3Y ", 7:6%) = Tmy as n — oo by WLLN.

(P5) With the same assumptions as (P1), 1/n 1 | &7 —}3—> 1/nE(3 all) = 1/n
S ETE(e;) =€ -0 =0 and similarly, 1/n Y7, €&} L.0asn— o0 by WLLN.

(P6) With the same assumptions as (P3) 1/nSr orer L 1/mY T ETE(O) = €rm,
and similarly, 1/n "7 | 6%¢! N &'m; by WLLN.
O

Theorem 3.4 Under the Assumptions 3.1 and 3.2, the fuzzy least squares estimators
,80 and ﬁl are weak consistent estimators for ﬁo and ,61 respectively. i.e.,

P
J—»B{f and ﬁf—»ﬂf’ as n — 00.
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Proof: By (P1)-(P6), following holds.
AD-BC = n*(3z+D{A5Gz+ 1)+ 6] (357 +2K +J) + 3ze + (F - &)
() + (7579))
n? (322 + 2K + J) {s85 + 85 32+ D) + (3e+5 o)}
Lo 55 (42 - 30C) +n? { L2 (37 + 1) + (37 + T) (m, & +miE)
(32 +2K +J)}.

We already showed that the second term converges to 0 when it is divided by A% — 3nC
as n — oo in Theorem 3.2. Hence 60 £, ﬂo While,

AB-3nD = n*(37+ 1) {367 +pf 3z + 1)+ (3245 - 81) | - 302 {6} 37+ 1)
+,6;*(3?2+2K+J)+3ﬁ+(€?—7@)+(§?—5ﬁ)+(@+55—ﬁ)}
£, BF (42 - 3n0) + n? {LI 3( ,fg'F+m,g7)}.

In Theorem 3.2, we also showed the second term converges to 0 when it is divided by

A% — 3nC as n — oo. Therefore B > BF. i, B3 and Bf are weak consistent
estimators for 8} and (7 respectively. ]

Theorem 3.5 Under the Assumptions 3.1 and 3.2, the fuzzy least squares estimators
[30 and ,81 are weak consistent estimators for 8y and f; respectively. i.e.,

By <+ B5 and By 5By asn oo
Proof: By (P1)-(P6), following holds.
AD'-BC = n*(33+1){f; (3T +1) + 67 (37 + 2K + ) + 37+ (2§~Z§)
+ (W—W} - (5??3%67757)} —n? (3&_2+2K+J)
{3ﬁ,3‘ +B7 (3T + 1) + (3E+9?—57)}
s By (42 - 3nC) +n* {13 (37 + 1) - (37 + 1) (m.& + mE")
-1 (32 +2K +J)}.

We showed that the second term converges to 0 when it is divided by A% — 3nC as
n — oo in Theorem 3.3. Hence §; 2, By . While,

AB-3nD' = n?(3z+1) {367 + 87+ D)+ (3e+7 — ) } —3n*{Bf 37+ 1)
+61 (357+2K +7 ) + 37 + (T —e€l) + (&7—507) - (Fa+der))
i B (A® ~ 3nC) +n? {LI +3 (mrng m;?) } .
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In Theorem 3.3, We also showed the second term converges to 0 when it is divided

by A% — 3nC as n — oo. Therefore 8; £, B . te., By and B] are weak consistent
estimators for 3, and 3 respectively. ]

4. Conclusions

Fuzzy least squares problem has been worked by many authors. But researches of
statistical optimal properties of the fuzzy least squares estimators are rare because the
structure of fuzzy least squares estimators are complicated. This paper proved the asymp-
totic unbiasedness and consistency of the estimators under some assumptions with an
Lo-metric in case of fuzzy input-output model.

Although only the simple linear regression model with triangular fuzzy data and suit-
able metric is discussed here, further research needs to be undertaken to discover the
analogous results in the class of more general models, such as multiple linear regres-
sion models or autoregressive models in time series analysis, with the more complicated
metrics and/or other types of fuzzy data.
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