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Estimation for the Half Logistic Distribution under
Progressive Type-II Censoring

Suk-Bok Kang®, Young-Seuk Cho?, Jun-Tae Han®

Abstract

In this paper, we derive the approximate maximum likelihood estimators{ AMLEs)
and maximum likelihood estimator of the scale parameter in a half-logistic distri-
bution based on progressive Type-II censored samples. We compare the proposed
estimators in the sense of the mean squared error for various censored samples.
We also obtain the approximate maximum likelihood estimators of the reliability
function using the proposed estimators. We compare the proposed estimators in
the sense of the mean squared error.

Keywords: Approximate maximum likelihood estimator; half logistic distribution;
progressive Type-II censoring; reliability.

1. Introduction

The cumulative distribution function(cdf) and the probability density function(pdf)
of the random variable having the half-logistic distribution are given by

e

and

(1.2)
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where 6 and o are the location and the scale parameters, respectively.

Use of this distribution as a possible life-time model has been suggested by Balakr-
ishnan (1985) who had established several recurrence relations for the single and the
product moments of order statistics. Adatia (2000) studied the estimation of the loca-
tion and scale parameters of the half-logistic distribution using generalized ranked-set
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sampling technique. Balakrishnan and Aggarwala (1996) established several recurrence
relations satisfied by the single and the product moments for order statistics from the
right truncated generalized half-logistic distribution.

A generalization of Type-II censoring is progressive Type-II censoring. In this case,
the first failure in the sample is observed and a random sample of size r; is immediately
drawn from the remaining n—1 unfailed items and removed from the test, leaving n—1—r;
items in test. When the second item has failed, 5 of the still unfailed items are removed
and so on.

Balakrishnan and Wong (1991) derived the approximate maximum likelihood esti-
mator(AMLE) of the scale parameter of the half-logistic distribution with Type-II right
censoring. They also studied the bias and variance of proposed estimator. Adatia (1997)
obtained an approximate best linear unbiased estimatiors(BLUESs) of the scale and the
location parameters of the half-logistic distribution based on fairly large doubly cen-
sosred samples. Balakrishnan et al. (2004) studied point and interval estimation for
the extreme value distribution based on progressively Type-II censored samples. Kang
and Park (2005) derived the AMLEs of the scale parameter of the half-logistic distribu-
tion based on multiply Type-II censored samples. Balakrishnan and Asgharzadeh (2005)
discussed the maximum likelihood estimator(MLE) of the scale parameter of the half-
logistic distribution based on progressive Type-II censored samples. They also provided
the AMLE of the scale parameter of the half-logistic distribution based on progressive
Type-II censored samples. Seo and Kang (2007) proposed the AMLEs of the scale pa-
rameter when the location parameter is known and the AMLE of the location parameter
when the scale parameter is known in the two-parameter Rayleigh distribution based on
progressive Type-II censored samples. They also proposed the AMLEs of the location
and scale parameters in the two-parameter Rayleigh distribution based on progressive
Type-II censored samples when two parameters are unknown.

Recently, Lee et al. (2008) proposed the AMLEs of the scale parameter in a triangular
distribution based on multiply Type-II censored samples by the approximate maximum
likelihood estimation methods. Han and Kang (2008) derived the AMLEs of the scale
parameter and the location parameter in a double Rayleigh distribution based on multiply
Type-II censored samples.

In this paper, we derive the AMLEs and the MLE of the scale parameter o and
the location parameter 8 under progressive Type-II censoring. The scale parameter is
estimated by approximate maximum likelihood estimation method using two different
types of Taylor series expansions. We also obtain the AMLEs and the MLE of the
reliability function using the proposed estimators. We compare the proposed estimators
in the sense of the mean squared error(MSE). We also compare the proposed estimators
in the sense of the MSE through Monte Carlo simulation for various censored samples.

2. Maximum Likelihood Estimation

We will discuss the maximum likelihood estimation of the scale parameter based on

progressive Type-II censored samples. Let X1..n,. .., Xm:m:n denote such a progressive
Type-II censored sample with (r1,...,7,) being the progressive censoring scheme.
Note that the case m = n, in which case ry = --- = r,, = 0, corresponds to the

complete sample situation, while the case r; =--- =r,,_; =0, r,,, = n — m corresponds
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to the usual Type-II censored sample.
The likelihood function based on the progressively Type-II censored sample is given
by

L= CHf(l'i:m:n; ‘97 0) {1 - F(xi:m:n; 9, U)}ri 3 (21)
i=1
where C =n(n—1-r)n-2—-r —r3)---(n—m+1—-r —-- —rp—1).

The random variable Z;..., = (Xiim:n —8)/0 has a standard half-logistic distribution
with pdf and cdf;
2€XP(—Zi:m:n)

f(Zi;m:'n) = {1+exp(—2i;m:n)}2

, 220

and

1 — exp(~2iimmn)

1+ exp(~2imm)’

The f(zi:m:n)’ fl(zi:m:n) and F(Zi:m:n) are satisfied as
— {1 - F|(Zi:m:n)}{1 + F(Zi;m:n)}

f,(zi:m:n) = —F(zi:m:n)f(zi:m:n)y f(zi:m:n) = ) .

F(Zi:m:n) =

z2>0.

From the Equation (2.1), the log-likelihood function may be written as

InL = K — mlno + ilnf(zi;m;n) + i rin(l — F(ziman)], (2.2)

=1 i=1

where K is a constant.
On differentiating the log-likelihood function with respect to ¢ in turn and equation
to zero, we obtain the estimating equation as

olnL 1 a -
(90‘ - _% {2m - ;rizi:m:n - Z("'i + 2)F(zi:m:n)zi:m:n} =0. (23)

i=1

We can find the MLE of ¢ as values & that maximize the log-likelihood function in
(2.2) by solving the equation dlnL/do = 0. Since the Equation (2.3) cannot be solved
explicitly, some numerical method must be employed.

From the Equation (2.1), the likelihood function is a monotonically increasing function
of §. Thus the MLE of 6 is § = X1m.n.

3. Approximate Maximum Likelihood Estimators

Since the log-likelihood equation do not admit explicit solutions, it will be desirable
to consider an approximation to the likelihood equation which provide us with explicit
estimator for the scale parameter.

Let

— Qi:m:n
cmen = F Y (Dimem) = —In [ —2m
é-z.m. (P e ) (1 N :n)
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where Qim:n = 1 — Piim:n and

m

H J+rm—pit+-+rm 1
T Tt T

Pizmin = 1-
j=m—i+l

First, we can approximate the following function by Taylor series expansion as
F(zi:m:n)zi:m:n ~ o; + BiZimin, (31)
where
1 1+ L 2
Q; = _'2'qi:m:n(1 +pi:m:n) {ln (_—pﬂﬁ) } )
Gi:m:n

1 1+ piim:
ﬂi = _qi:m:n(l +pi:m:n)1n (———El—m_n) + Divmin-

2 Qi:m:n

By substituting the Equation (3.1) into the equation (2.3), we may approximate the
likelihood equation in (2.3) by

Bg;L ~ 1 {2m ZTzZz min T Z(’f’i + 2)((11‘ + ﬂizi:m:n)} =0. (32)

i=1
We can derive an estimator of o as follows;
Zri (Xi:m:n - ) + Z Ti + Q)ﬁz ( mmn T é)
= =1

~ i=1

g1 = ™ (33)
2m — Z 7+ 2o
i=1
Since o; < 0 and G; > 0, the estimator &, is always positive.
Second, we can approximate the following function
F(zi:m:n) =Y + 5izi:m:n7 (34)

where

1 T
Yi = Pizmen + §Qi:m:n(1 +pi:m:n)ln <1%> )

1
61' - qumn(l + pi:m:n)-

Balakrishnan and Asgharzadeh (2005) derived an AMLE of the scale parameter ¢ using
the Equation (3.4) when 6 = 0 as follows:

_ —A++VA?-8mB

dm

(3.5)
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where

A=— {iriXi;m;n -+ i(ri + 2)71'Xi:m:n} s
i=1 i=1
B=- i(ri + 2)61X22mn
i=1

In this case, we use this estimator that is modified by
A= {Zri (Xi:m:n - é) + Z(Tz’ + 2)71 (Xi:m:n - é)} )
i=1 i=1

B=-— i(m +2)5; (Xz-:mm - é)2 :
i=1

4. Estimation of the Reliability

The reliability function of the half-logistic distribution is

t—0
1—exp (—T)
R)=1-Ft)=P(X >t)=1- £>0. (4.1)

(-57)
L+ exp | ===

For the progressive Type-II censored data, we now propose the AMLEs and MLE of
the reliability function R(t) using the proposed AMLEs &; and MLE &, # that can be
used for progressively Type-II censored sample as follows.

1 —exp <~—t~_0> 1 —exp (_E;_H_)
- ; N g
Rty =1~ i=1,2 and R(t)=1- (4.2)

t—0\ t—0Y)
14+exp| - = 1+exp -

From the Equation (4.2), the mean squared errors of these estimators are simulated
by Monte Carlo method(based on 10,000 Monte Carlo runs) for sample size n = 20,
m=15(3*0, 2, 4%0, 3, 6 x 0)(see, Figure 5.1 and Figure 5.2).

5. The Simulated Results and Illustrative Example

The simulations were carried out for sample size n = 10(5)20, 30, 40 and different
choices of the effective sample size m. For simplicity in notation, we will denote the
schemes (0, 0,...,n — m) by ((n — m) %0, n — m), for example, (10 * 0) denotes the
progressive censoring scheme (0, 0,...,0) and (3 * 0, 2, 2, 0) denotes the progressive
censoring scheme (0, 0, 0, 2, 2, 0).
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Figure 5.1: The relative MSEs of R;(t) and R(t) when the location parameter is unknown
[m=15(3%0, 2, 4%0, 3, 6% 0)]
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Figure 5.2: The relative MSEs of R;(t) and R(t) when the location parameter is known
[m =15(3%0, 2,4%0, 3, 6 x0)]

The convergence of the Newton-Raphson method depended on the choice of the initial
values. For this reason, the proposed AMLE &; and &, were used as starting values
for the iterations, the MLE is obtained by solving the nonlinear equations (2.3) using
Newton-Raphson method. The mean squared errors of the proposed AMLEs and MLE
are simulated by Monte Carlo method(based on 10,000 Monte Carlo runs) for sample size
n = 10(5)20, 30, 40 and various choices of censoring under progressive Type-1I censored
sample with ¢ = 1 and 8 = 0. These values are given in Table 5.1 and 5.2.
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Table 5.1: The relative mean squared errors for the estimators of the scale parameter o
and the location parameter 6.

n m Scheme [’ &1 g2 o
10 (10 x 0) 0.063196 0.078208 0.076629 0.142314
6 (3%0,2,2,0) 0.063600 0.138543 0.137045 0.142022
6 (2%0,4,3%0) 0.063600 0.137122 0.134839 0.167250
10 6 (4,5 = 0) 0.063600 0.132780 0.130675 0.191610
5 (5,4 % 0) 0.064016 0.158477 0.155321 0.213622
5 (4%0,5) 0.064016 0.168801 0.166944 0.194544
5 (0,5,3 x0) 0.064016 0.162799 0.159422 0.200173
15 (15 % 0) 0.030344 0.050703 0.049872 0.124611
10 (5,9 %0) 0.029970 0.076263 0.075098 0.146760
15 10 (4%0,3,3%0,2,0) 0.029970 0.077959 0.076663 0.080487
10 0,3,6 x0,2,0) 0.029970 0.076941 0.075696 0.083594
10 (2%0,1,0,2,0,2,3%0) 0.029970 0.078291 0.076978 0.100750
20 (20 % 0) 0.017670 0.036468 0.036000 0.115493
15 (3%0,2,4%0,3,6%0) 0.017694 0.050724 0.049987 0.093133
20 10 (5,2%0,5,6 x0) 0.017479 0.077032 0.075983 0.127705
10 (2%0,1,0,2,0,2,2%0,5) 0.017479 0.078774 0.077820 0.093016
10 (2%0,3,0,2,0,2,2%0,3) 0.017479 0.078108 0.076906 0.082563
30 (30 x0) 0.008072 0.024086 0.023841 0.108069
20 (3%0,5,3%0,5,12 %0) 0.008167 0.036586 0.036196 0.097341
30 20 (2%0,10,17 % 0) 0.008167 0.036191 0.035843 0.113585
20 (9%0,10,10 % 0) 0.008167 0.036880 0.036482 0.078897
15 (5,6%0,10,7 «0) 0.008178 0.050924 0.050364 0.085354
15 (10, 6%0,5,7=* 0) 0.008178 0.050039 0.049507 0.095634
20 (8+0,10,10,10 « 0) 0.004691 0.037335 0.036992 0.073347
40 20 (2%0,5,5,5,5,14 x 0) 0.004691 0.036505 0.036197 0.102695
20 (5,16 %0,5,5,5) 0.004691 0.036535 0.036284 0.051901
20 (3%0,15,7%0,5,8 % 0) 0.004691 0.036609 0.036305 0.077270

From Table 5.1 and 5.2, AMLE &; and &, are more efficient than the maximum
likelihood estimator & and the AMLEs are the function of the available progressive Type-
II censored sample Xi. i, .. -y Xmem:n and progressive censored scheme (ry,...,7,,) but
the MLE does not have the closed form. So the MLE can be evaluated by some numerical
method.

The AMLE &9 is more efficient than the AMLE 6; and MLE & in the sense of the
MSE when the location parameter is unknown. But the estimator &; is more efficient
than the estimator &, and & in the sense of the MSE when the location parameter is
known except some right censoring.

As expected, the MSE of all estimators decreases as sample size n increases. For fixed
sample size, the MSE increases generally as the number of unobserved or missing data
n — m increases.

From Figure 5.1 and 5.2, the MSEs of all estimators increase and then decrease as
R(t) increase.

When the location parameter is unknown(n = 20, m = 15(3%0, 2, 4%0, 3, 6x0)), the
estimator Ry(t) is generally more efficient than R, (t), but the estimator R(t) is generally
more efficient than Ry (t) and Ra(t) when R(t) > 0.4. Among the three estimators R(t),

Ri(t), Ry(t), R(t) is no good estimator when R(t) is small but R(t) is good estimator
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Table 5.2: The relative mean squared errors for the estimators of the scale parameter o
when the location parameter € is known.

n m Scheme o1 G2 &
10 (10 % 0) 0.067899 0.070844 0.206526
6 (3%0,2,2,0) 0.112634 0.121093 0.143336
6 (2 x0,4,3 % O) 0.113954 0.122874 0.210921
10 6 (4,5 % 0) 0.112904 0.121141 0.263509
5 (5,4 %0) 0.134356 0.144943 0.289342
5 (4%0,5) 0.134512 0.136355 0.127671
5 (0,5,3%0) 0.135790 0.146976 0.255676
15 (15%0) 0.045611 0.046968 0.171901
10 (5,9 %0) 0.068368 0.071424 0.200552
15 10 (4%0,3,3x0,2,0) 0.067931 0.070796 0.091272
10 (0,3,6 %0,2,0) 0.067531 0.070275 0.100976
10 (2%0,1,0,2,0,2,3 %0) 0.068766 0.072055 0.128421
20 (20%0) 0.033982 0.034767 0.153287
15 (3%0,2,4%0,3,6 * 0) 0.046048 0.047541 0.122460
20 10 (5,2%0,5,6%0) 0.069529 0.072922 0.166058
10 (2%0,1,0,2,0,2,2 %0, 5) 0.068688 0.069538 0.068801
10 (2%0,3,0,2,0,2,2%0,3) 0.068335 0.069512 0.067060
30 (30 x 0) 0.022623 0.022950 0.133918
20 (3%0,5,3%0,5,12%0) 0.034597 0.035464 0.123326
30 20 (2%0,10,17 % 0) 0.034364 0.035203 0.143582
20 (9%0,10,10 % 0) 0.034738 0.035647 0.099994
15 (5,6 % 0,10,7 x 0) 0.047038 0.048738 0.106608
15 (10,6 % 0,5,7 % 0) 0.046444 0.048009 0.121403
20 (8 *x0,10,10,10 0) 0.035481 0.036481 0.090305
10 20 (2%0,5,5,5,5,14 % 0) 0.034912 0.035818 0.126938
20 (5,16 % 0,5,5,5) 0.034224 0.034440 0.040073
20 (3%0,15,7+0,5,8 * 0) 0.034888 0.035830 0.096083

when R(t) is large.

When the location parameter is known(n = 20, m = 15(3%0, 2,40, 3, 6 x0)), the
estimator R;(t) and Ry(t) are generally more efficient than R(t), but the MSEs of three
estimators are almost same when R(t) > 0.8.

Let us consider the following data, which represent failure times, in minutes, for
a specific type of electrical insulation that was subjected to a continuously increasing
voltage stress as given by Lawless (1982)

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9.

This data has been utilized earlier by Balakrishnan and Wong (1991). For complete
data, we can obtain the MLEs 6 = 12.3 and & = 53.083927 and the AMLEs 5; =
40.368197 and g5 = 40.773586.

For this example of n = 12, m = 6(0, 2, 0, 2, 2, 0) and the progressive Type-II
censored sample is 12.3, 21.8, 28.6, 46.9, 75.3, 98.1, we can obtain the MLEs 6 =123
and § = 46.683830 and the AMLEs &1 = 45.299069 and &, = 45.989116.
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