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A Note on Nonparametric Density Estimation for the
Deconvolution Problem!
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Abstract

In this paper the support vector method is presented for the probability density
function estimation when the sample observations are contaminated with random
noise. The performance of the procedure is compared to kernel density estimates
by the simulation study.
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1. Introduction

Let X and Z be independent random variables with density functions f(z) and ¢(z),
respectively, where f(x) is unknown and ¢(z) is known. One observes a sample of random
variables Y; = X; + Z;, i = 1,2,...,n. The objective is to estimate the density function
f(z) where g(y) is the convolution of f(z) and g¢(z), g(¥) = (f *x ¢)(y) = ffooo fly —
z)q(z)dz. The problem of measurements being contaminated with noise exists in many
different fields (see, for example, Louis, 1991; Zhang, 1992). The most popular approach
to the problem was to estimate f(x) by a kernel estimator and Fourier transform (see,
for example, Carroll and Hall, 1988; Liu and Taylor, 1989; Fan, 1991). Fan (1991)
proved that the estimators of f(x) are asymptotically optimal pointwise and globally if
the Fourier transform of the kernel has bounded support. A further approach is based
on wavelet (see, for example, Pensky and Vidakovic, 1999; Walter, 1999; Lee, 2001; Lee,
2002; Lee and Hong, 2002).

Recently the support vector method has drawn much attention on classification and
regression problem. It was developed in Russia in the sixties by Vapnik and co-workers
(Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 1964). Weston et al. (1999) pro-
posed the support vector method for probability density function estimation using sup-
port vector regression algorithm. In Lee and Taylor (2008) the support vector method
was applied to estimate probability density function when the sample observations are
contaminated with random noise. However, the simulation study in the paper doesn’t
show any practical merit when it is compared to classical kernel estimates. Hence, in
this paper we mention some modifications to the procedure in Lee and Taylor (2008) and
introduce another method of estimation of a deconvolution density using support vector
regression method based on a reproducing kernel Hilbert space(RKHS).
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2. Support Vector Method for the Deconvolution Problem

In this section, we will introduce two different methods of estimation of a deconvolu-
tion density using support vector regression method. First, we will briefly introduce the
method of estimating a deconvolution density proposed by Lee and Taylor (2008).

Let

f@,w) =) wédz) =w-d(z), w=(wo,- - rWm,---), ®(@)=(dol2),- ., Pm(z),--.)-
r=0
Then,

6)= [ Fly-walwdu

—0oC

=w- @(y)’ @(y) = (aO(y)a ol(y)r .- ')7 ar(y) = (q * ¢1I~)(y)’ "/"1{ = ¢r

and
g(y) = /_oo fly — u)q(u)du

=w-0'(y), O'(y) =), h'W, ), 6 (y) = (g% ) (y)

In order to estimate f(z) from a training set {(yi, Gn(v:)) |y € R, Grn(y:) € R, i =
1,2,...,n}, we try to minimize the empirical risk function R.n,(G) with a complexity
term {|w]||2.

"

1
minimize Breg(G) = Remp(G) + Mlwll* = ~ Y Gy, Galy) + Alwl* (21)

i=1

with ¢(G(y;), Gr(y:)) being the cost function and A being a regularization constant. For
the e-insensitive cost functions (see, Vapnik, 1995)

60, ) = { IW =Gl = or G) = Gall 2

otherwise,

the equation (2.1) can be minimized by solving quadratic programming problem formu-
lated in terms of dot products in &. Then

w=3p0) (22)

and hence

Gly) = Zﬁi(e(yi), O(y)) = Zﬂik(yi, Y), k(y:, y) = (©(y:), ©(y)),
9w) =>_B:i(O:), &'(w)) = > Bk (Wi v), K (v v) = (8(w:),0'(v)),
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where k(y;, y) is a kernel function to compute a dot product in feature space. Now the
Fourier transform of ©(y) = (6o'(y), 61'(y),...) can be defined as

&'(w) = (4'@), 01’ @),-..) = (dw)do(@), d)dr(w),. ).

Let & = (¢o(w), 1(w),...). Then d(w) = ©'(w)/§(w) and by applying the Fourier
inversion formula, we can obtain a support vector density estimator for the deconvolution
problem

wT
€

f —i ooé(_w)eiwz =_1__ © & g e
flz) =5 /_oo ) dw = — /_w;ﬁ]k(y], )q(w)dw, (2.3)

when f(w) is absolutely integrable.

Now we will introduce the other method of estimation of a deconvolution density
using the support vector regression method based on a reproducing kernel Hilbert space
(RKHS). A (real) RKHS H is a Hilbert space of real-valued functions f on an interval
7 with the property that, for each ¢t € 7, the evaluation functional L., L; : f — f(¢),
is a bounded linear functional. Then, by Riesz representation theorem, for each ¢t € 7
there exists a unique element k, € H such that for each f € H, L:(f) = f(t) = (ks, f).
The function defined by k,(v) = k(u, v) = (ky, k) for u, v € 7 is the reproducing
kernel. Then, by the Moore - Aronszajn theorem (Aronszajn, 1950}, to every positive
definite function k on 7 x 7 there corresponds a unique RKHS Hj, of real valued func-
tions on 7 with k as its reproducing kernel. Note that any positive definite function
k(u, v) has an expansion k(u, v) = 3 oo Midi(u)¢;(v). Let us consider the set of func-
tions, f(z,w) = Y o qwré-(z) and define the inner product as (f(z, w), f(z, w*)) =
Z;’io wiw]/A;. Then we have a RKHS Hj with its reproducing kernel k¥ and will ap-
ply these properties of RKHS to the estimation of a deconvolution density. In order to
estimate f(x), first, g(y) will be estimated using the reproducing kernel of RKHS (see,
Mukherjee and Vapnik, 1999). Let

9y, w) = > wik(yi, v)
i=1
and

n
minimize (g, §) = (9, §)u = Y, wiw;k(yi, y;)

ij=1
y n

subject to max | Gp(y) — / ijk(yj, Y)dy'|ymy, = €. (2.4)
% —o0 521

This optimization problem is closely related to the support vector regression problem
with an e-insensitive loss function and hence the coefficients w;’s can be found by solving
the following quadratic programming problem:

1
(oo o) = arggniag—i(a* ~a)R K7 'R(a* — a) + y(af — ;) — e(a* + a)

0<of, ;<C, i=1,...,n,
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where K = [kijlnxn, kij = k(ys, ¥7) and R = [rglaxn, T35 =[5 k(y;, y)dy.
Then §(y, w) = Y i wik(yi, ¥), w = K 'R(a§ — ap). Finally, applying the Fourier
inversion formula, f(z) will be estimated. That is,

iwx

; 1 ooé(w) W 1 “ < L e
f(g;): E;r-/ = " = %[_m;wjk(yjaw)~

1) o et

when f(w) is absolutely integrable.

3. Simulation and Discussion

In this section we have tried to compare the performance of two methods introduced in
Section 2 using Gaussian kernel and the following three different estimators of continuous
distribution function, (3.1)~(3.3). However, the singular problem in K~! was occurred
when we used an estimator (2.5) with standard Gaussian kernel. Thus we fail to obtain
simulation results with regard to an estimator (2.5) and hence the simulation study in
this section is limited to the support vector method proposed by Lee and Taylor {2008)
with three different estimators of continuous distribution function. The singular problem
in the procedure of estimation is expected to be solved later.

The empirical distribution function was used in Lee and Taylor (2008)

Galt) = =1 <) (3.1)

as an estimator of the unknown distribution function G(y), which didn’t show good
approximation for the Parzen’s kernel estimator in the simulation study. For the de-
convolution problem, we deal with continuous distribution function only. Thus it make
sense to construct the empirical distribution function as a monotone increasing continu-
ous function. In this section two alternative estimators are considered in addition to the
empirical distribution function Gn(y). Let (Y1), ¥2),---,¥Y(n)) be an ordered data set.
As an alternative estimator, we can consider the following linear empirical distribution
function (see, Mukherjee and Vapnik, 1999)

kE ly—yw—Te/2 . Tk %
T LA NL Ay lfye[y(k)_?:y(k)'*’?);

G =q% " Tk ) 5.2
1 T)
n’ if 5 €[y Ye+y) and y¢|:y(k)—?k, y(k)+—2’3> :

where 74, is the distance between the k** data point and it’s nearest neighbor. As another
continuous distribution function estimator, using G, (y), we can consider the following
kernel regression estimator proposed by Nadaraya-Watson (Nadaraya, 1964; Watson,
1964)

Sk () aum)
Galy) = T
()

i=1

(3.3)




A Note on Nonparametric Density Estimation for the Deconvolution Problem 943

Now, using three different estimators of distribution function (3.1)—(3.3), we compare
the support vector method with Parzen’s methods. A numerical study of the deconvolu-
tion density is constructed when q(z) = 1/(2y)e™1*1/7, 4 = 0.1 and f(z) is the standard
normal probability distribution as shown in Section 5, Pensky and Vidakovic (1999). The
Gaussian Parzen estimator used in this section f(x) (see, Liu and Taylor, 1989) is

R 1 &[> K(h
fa)= > [ e Ele) g,
27 /- G(w)
where K (w) = e~“*/2 is the Fourier transform of the standard normal probability dis-
tribution. For given ¢(z) = 1/2y"te~1?l/7, 5 = 0.1, the Gaussian Parzen estimator f(x)
(see, Pensky and Vidakovic, 1999) is

A _ 1 n ao.sx__hyl? _—ﬁ I —Y; 2_
f(x)—mhn;e ( ){1 h2{< - ) IH

and the support vector density estimator f (z) (see, Lee and Taylor, 2008) is

twx
e

. 1 [P,
far= 57 [ LR w7
1 ’)’2 i _(z—y')2 ,yZ n 3 __(av—y')2
:~<§ +3;)Zﬁj(z—yj)e = +Fzﬁj(fﬂ“yj) PR ,
j=1 j=1

where k(z, y) = e~ 9%/27" and §(w) = (1 +y2w?)"".

Figure 3.1 and 3.2 show plots of the Parzen and support vector deconvolution esti-
mates for the Gaussian kernel when 20 and 100 points are randomly generated respec-
tively from the standard normal probability distribution f(x) and double exponential
probability distribution g(z). The exact probability density function f(z) is shown in
bold line and the support vector deconvolution estimate is shown in dashed lines. For
the support vector deconvolution estimates Gunn’s program and MatLab 6.5 was used
(see, Gunn, 1998). Each estimate was picked with the best possible value of parameters
based on the exact probability density function f(z). Figure 3.1 presents the simulation
study when a random sample of size 20 is generated from a target distribution, stan-
dard normal probability distribution f(z) and a noise distribution, double exponential
probability distributions g(z). The parameters, h = 0.7, ¢ = 1.2, C = oo, are chosen
for the best possible estimates with e-insensitive loss function(e = 0.05). The support
vector deconvolution estimate uses five points in the approximation. Figure 3.2 presents
the simulation study when a random sample of size 100 is generated and parameters,
h = 0.6, 0 = 1.1, C = o0, are chosen for the best possible estimates with e-insensitive
loss function(e = 0.05). The support vector deconvolution estimate uses five points in
the approximation, i.e., the number of support vectors is five.

Figure 3.1 and 3.2 show that the performance of the Parzen deconvoluion estimates
is better than the support vector deconvolution estimates. In particular, support vector
deconvolution estimates do not yield good estimates on the right tail part.
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Figure 3.1: The simulation study when a random sample is of size n = 20 ((Left)
Estimation with G, (y), (Middle) Estimation with G2 (y), (Right) Estimation with G2 (y))
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Figure 3.2: The simulation study when a random sample is of size n = 100 ((Left)
Estimation with G, (y), (Middle) Estimation with G} (y), (Right) Estimation with G2 (y))

4. Concluding Remarks

In this paper two different methods of estimation of a deconvolution density using
support vector regression algorithm were introduced. A simulation study was limited
to the first method because the singularity problem was occurred in the procedure of
the other proposed method. The performance of support vector deconvolution estimates
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conducted doesn’t yield good estimates than Parzen deconvolution estimates. A new
support vector method is needed to minimize drawbacks of the support vector deconvo-
lution estimates as the figures indicate. Thus another method proposed in this paper
is expected to be a solution to this problem when the singular problem is solved in the
future.
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