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Median Ranked Ordering-Set Sample Test for
Ordered Alternatives

Dong Hee Kim"), Bong Seak Ock?

Abstract

In this paper, we consider the c-sample location problem for ordered alternatives
using median ranked ordering-set samples(MROSS). We propose the test statistic
using the median of samples that have the same ranked order in each cycle of ranked
ordering-set sample(ROSS). We obtain the asymptotic property of the proposed test
statistic and Pitman efficiency with respect to other test statistic. In simulation
study, our proposed test statistic has good powers for some underlying distributions
we consider.

Keywords: Median ranked ordering-set samples; ordered alternatives; Jonckheere
(1954); Pitman efficiency.

1. Introduction

After McIntyre (1952) provided the original description of ranked-set sampling(RSS),
numerous parametric and nonparametric procedures based on RSS have been developed.
Takahasi and Wakimoto (1968) dealt with the statistical properties on RSS. Dell and
Clutter (1972) considered a useful method for improving estimates of the mean under
the imperfect judgment situation. Stokes {1977) studied the relation of the original
and concomitant variables on RSS. Stokes and Sager (1988) considered nonparametric
inference for RSS.

In the one-sample problem, Hettmansperger (1995) considered the sign test on RSS
under the perfect and imperfect judgment ranking. Koti and Babu (1996) evaluated the
exact null distribution of sign test on RSS. Bohn and Wolfe (1992, 1994) proposed the
Mann-Whitney-Wilcoxon statistic and investigated the properties of the test procedures
based on RSS for perfect and imperfect judgements. QOztiirk (1999) extended one-sample
sign test to two-sample sign test on RSS, comparing the confidence intervals of each one-
sample test for two population. Kim et al. (2000) studied c-sample problem for ordered
alternatives on RSS. Kim and Kim (2003) discussed the ranked ordering-set sampling
as an opposed RSS. The main difference of ROSS and RSS is such that ROSS does not
return observations until the sampling procedure is over but RSS does. Although ROSS
is more complex than RSS due to this procedure, the efficiency of ROSS is better than
that of RSS for the same sample distribution.

1) Professor, Department of Statistics, Statistical Research Institute, Pusan National University,
Pusan 609-735, Korea. Correspondence: heekim@pusan.ac.kr
2) Graduate Student, Department of Statistics, Pusan National University, Pusan 609-735, Korea.



948 Dong Hee Kim, Bong Seak Ock

Set, Rank
1 Xay Xazy - Xaw
2 Xy  Xezy - Xaw
k Xy  Xwny 0 X
AR AR S ¢
1 2
ROSS X4 Xoh XGoh

Figure 2.1: Ranked ordering-set sample structure(first cycle)

In this paper we now consider c-sample nonparametric testing problem for ordered
alternatives on MROSS. Our proposed test statistic does not use all samples, but use
the median of the i* samples in each cycle of ROSS. To compare our test statistic on
MROSS with Page-type test on ROSS, comparative tests on RSS and SRS, we obtain
the asymptotic relative efficiencies(ARE) of the proposed test statistic with respect to
those on RSS and SRS. For the simulation work, we compare the empirical powers of the
proposed test statistic with Page-type test on ROSS as well as those on RSS and SRS. The
uniform, normal, double exponential, logistic and Cauchy distributions are considered as
the underlying distributions. Through the simulation results, we show that our proposed
test statistic has the best power under uniform and normal distribution and is similar or
superior to the other statistics for logistic distribution. For the small sample size, when
underlying distribution is heavy tailed, the power of the proposed statistic is slightly
lower than that of RSS. But as the sample size k of MROSS is larger, the power of the
proposed statistic is better and better and similar or superior to that of RSS.

This paper is organized as follows. In Section 2, we explain the sample structure of
MROSS and propose the test statistic. Section 3 deals with the ARE and the asymp-
totic properties of the proposed test statistic. Simulation design and results under the
underlying distributions are given in Section 4.

2. The Proposed Test Statistic

In this section, we introduce ROSS methods, MROSS and propose our test statistic.

2.1. Review of ROSS

This sampling design needs k? samples from a specified population. The units within
each set, size k, are ranked by using a visual ordering or the ordering of a concomitant
variable. We obtain k2 ordered samples; Xays s Xaky -+ -3 Xk1)s - - s X(keky, where
X(i5) is the 4" order statistic in the i** set. From this samples, we next select k samples,

which are denoted by X((ll))l, X((22))1, et ,X((,I:))l, where Xg;l is the j** ranked sample of the

4" ordering observations in the {** cycle. This notation like X ((JJ)) , is already used in Kim
and Kim (2003). Figure 2.1 shows the ROSS.
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Figure 2.2: Median ranked ordering-set sample structure

2.2. The MROSS

We now introduce the MROSS, which plays an important role of our paper. Let

X].((:))i be the rt* ranked ordering-set sample in the it* cycle from the 7" population,

j=1,...,csr=1,...,k;; i=1,...,n;, we take the median of ROSS having same rank.
Figure 2.2 shows the structure of MROSS.
(1) (1) (k5) (k;) .
Let Xj(l)l""’Xj(l)nj7"'7Xj(k;)l""’Xj(k:;)nj be the ROSS of size n;k; from a

continuous distribution with Fj(z) = F(x — 0;) and pdf f;(z) = f(z - 6;), 1=1,...,¢,
where 0; is a location parameter of the j th population. Let k; and n; be the sample size
and the cycle size, respectively. Then we obtain the independent n;k; observations from

n; IcJZ pre-ranking sample observations.
Let X]((:)) be a median of Xj((:))i, i=Ll.gr=1.k;i=1,...,n; ie XJ((:)) is
a median of the i** ROSS having same rank. We assume that the cycle size n; is odd for
convenience of calculations. With m; = (n; +1)/2, we can easily derive the cdf Fy, () (2)
)

and pdf f¢ (z) of )Zj((:)), respectively,
RISt

Fg o (z) = :Y_: ( A ){Fé;)(x)}u{l“F<r(~§)(x)}nru’ @1

Jlr) =
u=my;

fgo (@) =m; ( " ) FO@) - r @) " 15 @, 2

where ]
F(@) = :T < kSJ ) {Foy (@)} {1 - Foy (@)}, (2.3)
OE ( krj ) {Foy@)} ™ {1 = Fiy (@)} finy(2), (2.4)
Foa) = k_ (%) try o - rep, 29
for@ =r (%) P&y (1= P sto) 2.9



950 Dong Hee Kim, Bong Seak Ock

2.3. The proposed test statistic.

We consider the testing problem for testing Hy : 6; = --- = 0.(= 8y) against H; :
6, < --- < 0. with at least one strict inequality. Our proposed test statistic based on
MROSS is

c kj k]-/

JMROsS = Z Z Z 4 (X] ((rr,)) X]((:))) (2.7

j<j r=1r'=1

where ¥(t) = 1,0 as t > 0, < 0. The proposed test statistic uses a median of the it
ROSS having same rank. Under the ordered alternatives Hy, the test statistic Jyrross
tends to be larger, so we reject Hy for large values of Jyposs.

3. Pitman Efficiency

We first calculate the mean and variance of the proposed statistic under null hypoth-
esis. For simplicity, we assume that n; = n, k; = k and n is odd. Then the mean and
null variance of Jyrross are

cle—1)k?
Eo(Imross) = (T)’

k k k k
Varo(Junoss) = C(012 . {3k2 Z Z 2 H42e=T)D Y b
k A . r=1r'=1 r=1r'=1
123 3N Gy — 55)}

ri=lro=1r'=1

where 6pq—f (p) )dF (q) a pqr f (p) X((q))( )dF (r))(x)

We write the detalled expresswn of Varo(Jas Ross) in Appendix and can compute
the variance using computer. When we take the specified sample structures, ¢ = 3,5,
k = 3,5 and n = 3,5, we obtain the null variance in Table 3.1.

To use our proposed test statistic, we need to show that our test statistic is asymptotic
normal. The following theorem can be obtained by Hoeffding (1948) and the Cental Limit
Theorem.

Theorem 3.1 Under the assumption that Hy : 61 = --- = 8.(= ) is true and the
sample sizes in each cycle are all equal(i.e. k; =k, j =1,...,c¢), the limiting (k — o0)
null distribution of

Jrross — Eo(Jmross)

Varg(Jmross)

is standard normal.

We next derive the Pitman efficiency of Jyross with respect to Jrss, Jsrs and
Pross. we consider a sequence of translation alternatives of the form, Hyx : 6; =
0 + A, j=1,...c, where A = 9/\/N, N = kc. Under the sequence of translation
alternatives, the efficacy of the Jy;ross is obtained as follows.
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Table 3.1: The Pitman AREs

c k n ARE(Jarross; Jrss) | ARE(Jmross, Pross) | ARE(Jmross, Jsrs)
3 3 3 4.478 6.427 10.502
3 3 5 4.417 9.274 10.693
3 5 3 9.364 9.736 34.915
3 5 5 9.102 14.205 35.945
5 3 3 3.950 5.391 9.426
5 3 5 3.791 7.751 9.562
5 5 3 8.2904 8.208 31.947
5 5 5 7.920 11.886 32.642

a{Jymross) = Z Z Z/ X( ) (t+ (7 =)D g ()dt. (3.1)

/
<G r=1r'=1 N

The derivative of (3.1) evaluated at A =0 is

0
SZEA(JMROSS) | A=0

¢ k k peo
= '~ ZZ/ Fxo(t+ (0" =94 o0 )t ao

i<y’ r=1¢r'=1 oo

- : : ® n! 2 k! 2
—j;']_] 2;/00{ )'<n—m)'} {(r—l)!(k_r)!}

" {(TTUI'C('TW}Q {Fo} ™ {a-rgw)
{F )}(m-” {1 Fiw} T R @)Y

x {1 = Fiy 0} {Foy 0} 70 {1 = Fioy ()}
x {F@Y {1 - F(8)}F ) £2(t)dt. (3.2)

The derivatives of EaJrss) and EaJsrs) evaluated at @ = 0 are given in Kim et
al. (2000).

c (o0} 2
b—a&EA(JSRS) la=o=Y (' - j)kQ/ { m — 1)7!1(!,1 - m)g}

7<j’ o

x {F@)}" V(1 - F@)Y ™ f2(t)at, (3.3)
6 c k ! 2
B—A—EA(JRSS)!Azo =JZ; i'=3 Tz:: Ez:/ {(m _ 1)n(n m)'}

8 {(T~1)]'€(!k—7’)'} {(T’—l)k(!k‘“)!}
x {Fry @}V {1 - By (0}
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x {Fen @}V {1 = Fin (0}
x (P (1 - Fe)y* 0 fydt,  (34)
where

Jsrs = ZZZ‘I’< ]w—X]r),

j<j r=1r'=1

Jrss = Zz Z ( i) J(T))

j<jr=1r'=1

From (3.2}, (3.3) and (3.4), we have the following efficacies of Jyrross, Jrss and
Jsrs by the definition 5.2.14 of Randles and Wolfe (1979).

2 Ea(Jmross) | a=o

eff(JMRoss) = hm 5 (35)
—00 \/kC Varo(Jamross)
= Ea(J =
eff(JRss) = h BA A( RSS)'A 0 s (36)
k—o0 \/ ke Var()(JRss)
=~ Ea(J, =
eff(Jsgs) = h 6A A( SRS)'A 0 (37)

k—oo \/kc Va.ro(JSRs) ’

where Varg(Jsrs) = ck?(c — 1)(2kc + 2k + 3) /72 and Varg(Jgss) is given in Kim et al.
(2000).
The efficacy of Progs from Kim et al. (2006) is

eff(Pross) = v/e(c — 1) [/_ {f(h)( )} ] h= Ichl (3.8)

Then, the ARE of Jyrross with respect to Jrss, Jsrs and Pross are

eff(Jarross) |

ARE(Jpposs, Jrss) = T off(Jrss) (3.9)
£f(J ?

ARE(Jmross; Jsrs) = {E‘fff(]vlj—s—}is)s)} (3.10)
£f(J 2

ARE(Jmross, Pross) = {%ﬁ} (3.11)

With the aid of computer, (3.9), (3.10) and (3.11) can be evaluated. We provide the
computed results in Table 3.2 when the underlying distribution is uniform. The values
of ARE we consider here are very good, in addition the above three AREs are greater
than 1 and increase as k, n do.
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Table 3.2: Variance of Jyrross for some specified ¢, k, n.

953

c k n Varg(Jarross) c k n Varg(JarroSs)
3 3 3 3.2852 5 3 3 17.6228
3 3 5 3.2507 5 3 5 17.5023
3 5 3 5.5609 5 5 3 29.6809
3 5 5 5.4353 5 5 5 29.2304
Table 4.1: Empirical powers of tests(c = 3, n = 3, a = 0.05)
a) Uniform Distribution
s es [
k| Statistic 00 02 04 06 08 )
JsRrs 0.052 0.173 0.365 0.601 0.817 0.942
3 Jrss 0.050 0.267 0.628 0.888 0.983 0.999
Pross 0.030 0.134 0.358 0.620 0.822 0.934
JMROSS 0.049 0.485 0.872 0.986 0.999 1.000
Jsrs 0.050 0.146 0.332 0.581 0.807 0.942
5 JRrss 0.048 0.326 0.770 0.974 0.999 1.000
Pross 0.032 0.234 0.616 0.893 0.981 0.998
JarroSss 0.057 0.788 0.992 1.000 1.000 1.000
b) Normal Distribution
- [}
Statistic 0.0 04 08 12 15 30
Jsnrs 0.050 0.108 0.212 0.401 0.564 0.717
Jrss 0.052 0.173 0.358 0.591 0.786 0.912
Pross 0.033 0.102 0.233 0.412 0.617 0.768
Jarross 0.049 0.162 0.364 0.605 0.812 0.935
Jsnrs 0.038 0.101 0.211 0.364 0.539 0.705
Jrss 0.041 0.177 0.433 0.714 0.903 0.979
Pross 0.032 0.119 0.300 0.537 0.749 0.888
JrrROSS 0.058 0.271 0.609 0.877 0.978 0.998
¢) Logistic Distribution
. [
Statistic 0.0 04 0.8 12 16 70
Jsrs 0.050 0.098 0.150 0.229 0.316 0.412
Jrss 0.050 0.106 0.191 0.321 0.450 0.579
Pross 0.030 0.066 0.128 0.212 0.317 0.429
JATROSS 0.053 0.104 0.180 0.274 0.390 0.527
Jsrs 0.042 0.077 0.123 0.184 0.266 0.358
Jrss 0.047 0.112 0.216 0.369 0.545 0.702
Pross 0.032 0.099 0.220 0.403 0.591 0.763
Jrrross 0.057 0.152 0.297 0.485 0.672 0.816
d) Double Exponential Distribution
pgt [
Statistic 0.0 04 08 12 % 2.0
Tsrs 0.055 0.137 0.248 0.382 0.527 0.660
Jrss 0.051 0.156 0.310 0.505 0.682 0.811
Pross 0.030 0.105 0.252 0.432 0.613 0.760
JMROSS 0.047 0.122 0.237 0.391 0.543 0.685
Jsrs 0.044 0.103 0.208 0.340 0.498 0.646
Jrss 0.045 0.159 0.372 0.612 0.802 0.922
Pross 0.032 0.191 0.496 0.774 0.923 0.976
JMROSS 0.054 0.195 0.424 0.685 0.869 0.957
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e) Cauchy Distribution

— 7

k| Statistic 0.0 06 2 138 24 30
Tons 0.061 0.162 0.329 0.526 0.693 0.812

s | Jnss 0.037 0.129 0.297 0.508 0.687 0.815
Pross 0.040 0.178 0.447 0.706 0.871 0.949
JMROSS 0.050 0.108 0.180 0.249 0.322 0.403
Jons 0.046 0.109 0.208 0.345 0.493 0.629

s | Jrss 0.050 0.154 0.347 0.577 0.764 0.880
Pross 0.032 0.145 0.363 0.622 0.818 0.924
JMROSS 0.066 0.168 0.329 0.527 0.719 0.853

4. Power Comparison

Now we compare the empirical power of the proposed test statistic Jyrross with
Pross, Jrss and Jsrs. The powers are obtained from the five underlying distribution,
such as uniform(U(0, 1)), normal, double exponential, logistic and Cauchy distributions.
Except for uniform, the others have scale parameter 1.

Through the simulation study we consider the sample size k¥ = 3,5, the cycle size
n = 3,5, the population size ¢ = 3,5. The location parameter has § = 0.0 (0.2) 1.0 or
6 = 0.0 (0.4) 2.0. For Cauchy distribution, § = 0.0 (0.6) 3.0. The j‘* population has
0;=0+(G-1)xA, A= 0/%, j=1,...,c. Simulation size is taken as 10,000. The
critical value is computed from the asymptotic distribution of the proposed statistic in
Theorem 3.1. The empirical power at 8 = 0.0 is the empirical Type I error of the test
statistic.

From Table 4.1, Jyross has the best power among the test statistics when the
underlying distribution is uniform or normal distribution. Except for the case ¢ = 3, n =
3, k =3, Juross is also superior to Jrss on the other cases under logistic distribution.

If the underlying distributions have heavy tails and the sample size k is small, the
power of Jarross is strangely lower than that of Pross, Jrss. As sample size k of
JMmRross increases, the power of the proposed test statistic increases, and is similar or
superior to those of Jrsg.

Appendix: The Variance of the Proposed Test Statistic

c k k
Varo(Jamross) = Varg Z Z Z o (j(jl((rr’l)) _ XJ((:))>
j<gt r=1r=1
c k k
= 22 ) Ve (\I' (Xj'((rr/')) -%0))
J<g' r=1r'=1
c k k
2 R o (v (i - XiE). ¥ (15 - )
1 2 r=1r'=
c k k o . . )
+ 3 Y3 cor(e (R -x). v (R - 1))

i<ii#iy r=1r=1
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535> ZCov( (X5 - X)) s v (& - %,63))

j<j’ riFra r'=1

c k k , B
DI CO"( (XJ o - XJ((:))) (Xj'((?;)) _Xj((:))))

J<i'r=1vi A,

c k k
_ (r (r) (r) (r)
-y (1) fi-r(50 > 10) )

j<jt r=1r'=1
c k

k
* 22 { (max (Xl((:))’ XQ(T)) X, ((Tr)) P (X] ((rr’) > Xx((:'))) }

J1#j2<j’ r=lr'=1
SERLAL N g ") ( (r)
(r > (r' > (r > (r') r
2 Z{ (min (%00, £,73) > X,3) - P (X80 > X,3) }
i<hi#spr=lr=l

c k

k

+ ; Z Z:l{ (max (XJ((:l) XJ((:Z))> < Xj’((rr’)))
J<j' riFrar’=

((7;1)) X] ((:,)))P(X (r2) <X (7‘))}

4

J(ra2) UG

#
P(X
J

k

(o4
I r)
> Z {P (mm( PaCAL Xj’(rZ)) > X, (r))
1 v

r=
) h) o () (rh)
—P (X o) < Xy ) (Xj(r) < Xj’(rZ))}
k

/ FX((T)) (x)dFXfr.,/)) (z) = Z Z {/ F)E((")) (m)dF;(((r;)) (x)} }

J<j’

j<j! Lr=1r'=1 = _
c kK o 9
SR 9 of B M) pee
J1#ja<j? Lr=lp'=1v "
k k o )
DRI (x)dpx(r,)m}
r=1p/=1 -00 ) (v
c k k 0
55 I %) o) [ (ERNIE) RtE
j<jl#gs Lr=1r'=1Y7% "
k k oo
N Z {/ X(r) (CL‘)dF (r )(i‘ ]
r=1r'=1 -0
C k k 00
+ Z Z/ FX<r1)(:E)FX(r2)( )dF (1,1)( )
i<j’ 7‘1?(:7‘2 rf=1 o0 (r1) (rg) ("1)

k oo o0
— F .’BdF—r' F"rz dF~r’
> [ F@drgn@ [ R Xérfi‘m)}
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(r)

+§C_: [i i /oo {1—F (r)(x)}{l—F (i (€ )}dF)ym(x)

§<g’ Lr=1p)zry Y =00 o b
E ok oo N
L Lo [ pergoloo
r=1rigry T T 1) X -0 () "
[k K& o0 2
-2 |72 { [ Ay e)
Ji<i’ r=1r/=1
c k k oo 9
+2 [ZZ/ {F;((r)( )} dF . (,l,)( )
Ji#ja<j’ Lr=1pr=17—° r X
ko k o )
- Z Z {/ FX(T) <$)dF)-((r/)(:];)}
r=1r/=1 —00 () ")
[ k k k oo
ED3 D) 25 o) RE T IMEE
j<j’ Lri=1rp=1¢/=17V 7~ (r1) (r2) (r)
E ok aeo 9
- Z/ {Fxm (I)} dF ¢ (z)
p=1p=1v —® () ()
[
- Fo ) (@)dF g F o) (2)dF 5oy (x
523 5 [ g [ oo
ko k -
+ X Y[ Fp@arge )}
r=1r/=1 -0 S (T/)
_ C(C_ 1) 3]{:2 4 11 dF 2
12 TR );;:1 X(r) (z) (r;))(:c)
ko k
4= Y. [~ Fyn@PiFeen(o)
r=1r/=1 r

k

+12 Z Z > {/ (n) 2)F () (2)dF 3o ()

ry=1rpg=1r'=1 (r2) (TI)

_/oo Fo)(@)dF ;00 () X/°° Fiea) (2)dF g (@ )}}

—0o0 (’"1) (") —oo (T2) (r')

References

Bohn, L. L. and Wolfe, D. A. (1992). Nonparametric two-sample procedures for ranked-
set samples data, Journal of the American Statistical Association, 87T, 552-561.



Median Ranked Ordering-Set Sample Test for Ordered Alternatives 957

Bohn, L. L. and Wolfe, D. A. (1994). The effect of imperfect judgement rankings
on properties of procedures based on the ranked-set samples analog of the Mann-
Whitney-Wilcoxon statistic, Journal of the American Statistical Association, 89,
168-176.

Dell, T. R. and Clutter, J. L. (1972). Ranked-set sampling theory with order statistics
background, Biometrics, 28, 545-553.

Hettmansperger, T. P. (1995). The ranked-set sample sign test, Journal of Nonpara-
metric Statistics, 4, 263-270.

Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution, The
Annals of Mathematical Statistics, 19, 293-325.

Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives,
Biometrika, 41, 133-145.

Kim, D. H. and Kim, H. G. (2003). Sign test using ranked ordering-set sampling, Journal
of Nonparametric Statistics, 15, 303--309.

Kim, D. H., Kim, H. G. and Park, H. K. (2000). Nonparametric test for ordered alter-
natives on multiple ranked-set samples, The Korean Communications in Statistics,
7, 563-573.

Kim, D. H., Kim, H. G. and You, S. H. (2006). Nonparametric test for ordered alterna-
tives on ranked ordering-set samples, Journal of the Korean Data Analysis Society,
8, 459--467.

Koti, K. M. and Babu, G. J. (1996). Sign test for ranked-set sampling, Communications
in Statistics - Theory and Methods, 25, 1617-1630.

Meclntyre, G. A. (1952). A method for unbiased selective sampling using ranked sets,
Australian Journal of Agricultural Research, 3, 385-390.

Oztiirk, O. (1999). Two-sample inference based on one-sample ranked set sample sign
statistics, Journal of Nonparametric Statistics, 10, 197-212.

Randles, R. H. and Wolfe, D. A. (1979). Introduction to the theory of nonparametric
statistics, John Wiley & Sons, New York.

Stokes, S. L. (1977). Ranked set sampling with concomitant variables, Communications
in Statistics - Theory and Methods, 6, 1207-1211.

Stokes, S. L. and Sager, T. W. (1988). Characterization of a ranked-set sample with
application to estimating distribution functions, Journal of the American Statistical
Association, 83, 374-381.

Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean
based on the sample stratified by means of ordering, Annals of the Institute of
Statistical Mathematics, 20, 1-31.

[Received August 2008, Accepted October 2008]



