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A Weak Convergence of the Linear Random Field
Generated by Associated Randomvariables Z?!

Tae-Sung Kim"), Mi-Hwa Ko?, Hyun-Chull Kim?®

Abstract

In this paper we show the weak convergence of the linear random(multistochastic
process) field generated by identically distributed 2-parameter array of associated
random variables. Our result extends the result in Newman and Wright (1982) to
the linear 2-parameter processes as well as the result in Kim and Ko (2003) to the
2-parameter case.

Keywords: Weak convergence; linear random field; associated; maximal inequality;
two-parameter process.

1. Introduction

A finite collection of random variables, Y, ..., Y, is said to be associated if for any
two coordinatewise nondecreasing functions f, g on R",
Cov(f(Y1,..-,Y), sa(11,...,Y,)) >0, (1.1)

whenever the covariance is defined. An infinite collection is associated if every finite
subcollection is associated. This definition was introduced by Esary et al. (1967) and
has found several applications in reliability theory (see, Barlow and Proschan, 1975).
The basic concept actually appears in Harris (1960) in the context of percolation models
and it was subsequently applied to the Ising models of statistical mechanics in Fortuin
et al. (1971). In the statistical mechanics literature (see, e.g., Lebowitz, 1972), which
developed independently of reliability theory, associated random variables are said to
satisfy the FKG inequalities.

One of the results originating in statistical mechanics which is of particular probabilis-
tic interest concerns a central limit theorem for certain stationary p-parameter arrays,
{&(t1,. .., tp), (t1,...,tp) € ZP} of associated random variables (see, Newman, 1980).
Let {&(t1,...,tp), (t1,-..,tp) € ZP} be a strictly stationary p-parameter array of finite
variance, mean zero, associated random variables such that

o?= Y Cov(£(0,...,0), &ty ,t,)) < co. (1.2)

(tl,....tp)EZp
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For 0 <ry,...,mp < 1, define
[nr1] [nrp]
W'n.(’rla'- Z thh "7 7
~ onk
tl 1 tp=1
where [-] denotes the usual greatest integer function and let W(ry,...,r,) be the p-

parameter Wiener process, a mean zero Gaussian process with
Cov(W(ry,...,mp), W(s1,...,8p)) = I%_, min(r;, s;). (1.3)

Newman and Wright (1982) showed that the finite dimensional distributions of W,, con-
verges in distribution to those of W.

The linear processes are of special importance in time series analysis and they arise in a
wide variety of contexts (see, e.g., Hannan, 1970, Chapter 6). Applications to economics,
engineering and physical sciences are extremely broad and a vast amount of literature
is devoted to the study of theorems for linear processes under various assumptions on
random variables.

Kim and Ko (2003) showed a weak convergence of the stationary linear process gen-
erated by associated sequence for the case p = 1 and extended the result in Newman and
Wright (1981) to the linear process.

We are interested in a weak convergence for a linear random fields(multipameter
stochastic processes) on the lattice Z2 .

In this paper we extend the weak convergence of 2-parameter arrays of associated
random variables in Newman and Wright (1982) to the linear random fields by using
the generalized Beveridge - Nelson decomposition (see, Marinucci and Poghosyan, 2001;
Phillips and Solo, 1992) and the maximal inequality (see, the proof of Theorem 10 in
Newman and Wright, 1982).

2. Decomposition of Bivariate Polynomials
Define a linear random field(multiparameter stochastic process) on Z?, by
tl, t2 Z Z a(zl, ’LQ tl - 7,1, t2 - 7,2) (tl, tg) c Zz, (2.1)

11 =0 i2=0

where {£(t1, t2)} is a 2-parameter array of identically distributed and associated random
variables with E£(t, t2) = 0 and E(£(ty, t2))? < oo and the real number

a(il,ig) >0, for all (il, ig), i1,72 € NU {0} (22)

To consider the decomposition of bivariate polynomials (see, Marinucci and Poghosyan,
2001) put

oo

Az, 22) = Z a(iy, i2)xlx?, (z1, 22) € R?, (2.3)

11=0142=0
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where jz;] <1, i = 1,2 and

oo o0

ZZ SN alk k)< (2.4)

21‘—0 12“0 kl'—ll'f‘*l k2~—22+1
Note that (2.4) implies
co oo
= Z Za(il, ?;2) < o0
i1=0ip=0

The following lemma extends a result known for p = 1 as the Beveridge-Nelson decom-
position (c¢f. Phillips and Solo, 1992) to the case p = 2.

Lemma 2.1 (Marinucci and Poghosyan, 2001) Let I' be the class of all subsets -y
of {1,2}. Let y; ==z; if j € y and y; = 1 if j ¢ v. Then we have

3317 -T2 Z {HJE’}’ j 1 }A’)’(yli y2)

v€T
where Il = 1 and
o0 oc . .
Ay, v2) = D Y ay(in, i)yt g, (2.5)
if‘“O iy =0

av(zl, 32 Z Z 51; 32 (2'6)

sy=i1+1 8p=ip+1
where the sums go over indices s;, j € vy, where as s; = i; if j ¢ 7.

It follows from (2.3}, (2.5) and (2.6) that A(1, 1) = Ap(1, 1).
Let A{]} = Ay, A{g} = A and A{Lg} = Ajq.
In other words, we have
Alzy, z2) = A(L, z2) + (z1 — 1) A1 (21, 22),
A(l, .1‘2) = A(l, 1) + (1’2 - 1)A2(1, .’EQ),
Ar(zy, T2) = A1z, 1) + (@2 — 1) Aoy, 22),

where
o0 oG oo
N1
Az, z9) = E E E a(ky, i)z xy,
i;“()iz_ﬁlxl_i1+l
oG
i
Arz(z, z2) E E E Z alky, ko)zital,
1y=049=0ky==t;+1 kp=io+1
hence

A(.’L‘l, 1232) = A(]., 1) + (:L”) — 1)141 (:L‘l? 1) —+ (372 — 1)A2(1, {L‘g)
-+ (.’II} — 1)(.’1)2 B 1)A12(.’I)1, .’Eg).
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As in Marinucci and Poghosyan (2001) we also consider the partial backshift operator
satisfying

Blf(tl, tz) = ﬁ(tl -1, 32) and Bgﬁ(tl, tg) = f{il, to — 1), (27)

which enables us to write (2.1) more compactly as

o0 o0
X(ts, t2) = Y_ Y aliy, ia) By BEE(t, ta)

il =0 ’l:z:O

= A(By, B2)&(t1, ta), (2.8)
where
X o0 ) .
A(By, Bo) =Y > alir, i2) B B
11:0 i2=0

The above ideas shall be exploited here to establish the weak convergence of the linear
field on Z2. To this aim, we write

f»y(tl, tZ) = A'Y(Lla LQ)S(tla t2)7 (2'9)
where the operator L; is defined as L; = B; for ¢ € «, L; = 1 otherwise; that is
&1(ty, t2) = A1(By, 1)é(t, t2),

§a(th, t2) = A2(1, Ba)é(ty, t2),
&12(t1, t2) = A12(By, B2)é(t, t2).

Remark 2.1 Note that from (2.2}, (2.4) and (2.6) we have
0< Z Z a~ (i1, 12) < 00. (2.10)
i1=ﬂ ig:O

Remark 2.2 Note that &,(ty, t2) = Z“—o Zm 0 0y (i1, 12)€(t1 — i1, t2 — i2) by (2.5),
(2.7) and (2.9) and that &,(t1, t2) s are associated by the properties of association since
a (i1, i) > 0 (see, Esary et al., 1967).

3. Results
The following Lemma is a moment maximal inequality for associated random variables
on Z?:

Lemma 3.1 (Newman and Wright, 1982) Let {£(t1, t2), (t1, t2) € Z?} be a 2-
parameter array of mean zero, finite variance, associated random variables. Then we
have

k1 ko
< 2
E <1<k1<m 1<k;<n Z Z §(ty, o ) E(Sm0); (3.1)

t1=1%=1

where Sy = 3001 30 21 &, t2).
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Theorem 3.1 (Newman and Wright, 1982) Let {£(1, t2), (t1, t2) € Z2} be a strict-
ly stationary 2-parameter array of finite variance, mean zero, associated random variables
such that

o= > Cov(¢(0,0), &(ts, t2)) < oo. (3.2)
(t1,t2)€2?

Then, for 0 <7y, rp <1
Wn('f'l, 7‘2) = W(Tl, 7‘2),

where W(-,-) denotes 2-parameter Wiener process, i.e., a mean zero Gaussian process
with covariance function satisfying

E(W(r1, 2)W(s1, s2)) = min(ry, s1) X min(ry, sg)
and = denotes weak convergence.
To prove main result we need the following lemmas.

Lemma 3.2 Let {£(t1, t2)} be a 2-parameter array of identically distributed, mean zero
associated random variables satisfying condition (3.2) in Theorem 3.1. Assume that (2.2)
and (2.4) hold. Then

E(&,(t1, t2))? <00, foryeTl. (3.3)
Proof: From Remarks in Section 2 we have

= Z Z ay (i1, i2)€(—11, —i2)

i1=01i3=0

=D _ay($(0)E(=4(0),
=0

where ¢ : Z — Z? and {£(—¢(i))} is a sequence of identically distributed and associated
random variables. Hence,

E(&(t1, t2))" = B(&(0, 0))

o 2
E(Zams(z))&( &( )))

i=0

{E <ga'r i))>2}

0 600) { (6(~0()) }}

Li=0

IA

o]

Zaw ()
1=0

< oo by (2.10),

<C
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where the first bound follows from Minkowski’s inequality and the second bound from
condition (3.2). O

From Lemmas 3.1 and 3.2 we also have:

Lemma 3.3 Let {£(t1, t2), (t1, ta) € Z2} be a 2-parameter array of identically dis-
tributed, mean zero associated random variables satisfying (3.2) in Theorem 3.1. Assume
that (2.2) and (2.4) hold. Then

1 2
< 2
E <1<k1<m 1<ky<n Z Z &ilty, t2 ) < B(Smn)",

t1=1ty=1
where £, (t1, t2) is defined in (2.9) and Smn = Y7 Dop; &(t1, ta).
The following theorem is the main result.

Theorem 3.2 Let X(¢1,2) be defined as in (2.1) and {£(t1,t2), (t1,t2) € Z?} a 2-

parameter array of identically distributed, finite variance, mean zero, associated random

variables satisfying the condition (3.2) of Theorem 3.1. Assume that (2.2) and (2.4) hold.
Then, for 0 < rq, 19 <1

[nr1] [nre]

on Z D X(t, t2) = AL, DW(r1, ), (3.4)

t1 1to=1

where 02 =37, 172 Cov(£(0, 0), &(t1, t2)) < o0.

Corollary 3.1 Let X (¢, t2) satisfy model (2.1) and {£(¢1, t2)} a 2-parameter array of
identically distributed and associated random variables with E£(t1, t2) = 0, E(&(t1, t2))?
< oo. If a(iy, i2) = 1 for iy = i3 = 0, a(i1, i2) = 0 otherwise, then (3.4) holds.

Ezample 3.1 Let A(zy, x3) = 1 + z1 + 2122 + 25 and let
X(ty, t2) =&(t1, to) +E(t1, =1, to) +&£(t1 — 1, t2 — 1) +&(t1, t2 — 2)
= A(Bi1, B2)¢(t1, t2)

for A(By, By) = 1+ By + B1By + B2. Then A(1, 1) = 4 and Theorem 3.2 implies, as
n — 00,

[nr1] [nre]

YN Xt t2) = AW (ry, 7).

t1=112=1

Remark 3.1 Note that if a(iq, i2) = 1 for 4, = i3 = 0, a(iy, i2) = 0 otherwise, then
X (t1, t2) = &(t1, t2).

Remark 3.2 Note that Corollary 3.1 is a special case of Theorem 3.2. Hence Theorem
3.2 is an extension of Theorem 3.1.
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4. Proof of Theorem 3.2

Proof: From Theorem 3.1 we have

[nra] [nro]
1
— t,te) = Wiry,re). 4.1
. tl:lt;f( 1,t2) (r1i,m2) (4.1)

From condition (3.2) and Lemma 3.3, there exists a positive constant C such that

E (1<k1<m 1<k2<n Z Z 57 ti, t2)) < Cmn. (472)

t1=1¢,=1

If we apply Lemma 2.1 to the backshift binomial A(By, Bs}, then the following equal-
ity holds almost surely:

X(t1, ta) = A(L, 1)&(t1, ta) + (By — 1) A1(By, 1)&(t1, t2)
+ (B2 — 1)Ax(1, By)&(ty, ta) + (By — 1)(B2 — 1) A12(B1, Ba)&(th, t2)

which implies that, for 0 < r, ro <1

[nr] [nre] [nr1] [nra] [nra] [nra]
SN X)) =Y S A Ve, ) - Y Efnni], t) + Y &1(0, t)
t1=1¢=1 t1=11tp=1 ta=1 to=1

[nr] [nr]

- Z §2(t1, [nro]) + Z &2(t1, 0) ~ £12(0, [nra]) + £12(0, 0)

ti=1 ty=1
= &12([nr], 0) + &i2([nr], [nre))

[nry] [nre)

=" 3" A, DE(t, t2) + Ra(ry, 72). (4.3)

ti=11z=1

Note that &, (-,-), &(-,-) and &12(-,-) are associated (see, Remarks in Section 2).
From Markov’s inequality and (4.2), for 0 <7y, r2 < 1,

2
[nrs]
Eo<n ax_| (tzlffl ([nri], tz))
>4 2

{nra]
—1
P{()<Irrllr2<l tzlﬁl [nry], t2) 352
2=

<Cn™' =o(1), (4.4)

as n — co. We can also apply exactly the same argument to establish

P
0<r1 7‘2<1

[nry]

Z &(ty, [nra])

t1—=1

} =o(l), asn— oco. (4.5)
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By Lemma 3.2 we have for 0 < ry, r; <1

E(€12(nr1], [nr2)))” < o0

and hence by the same argument as above we also have

P {0521%51”—1 |€12([nr], [nra])| > (5} =o0(l), asn — oo. (4.6)

Thus, we have

sup ln_an("'la r2)| = Op(l)»
0<ry,r2<1

which yields

[nr1] [nr2]

(en)™2 )Y X(t, t2) = AL, )W (ry, m2), asn— o0

t1=1ta=1

by Theorem 4.1 of Billingsley (1968). O

5. Concluding Remarks

It seems interesting to consider the possibility to apply the same ideas for the case
where the innovations £(t1, t2) have a martingale-difference structure of dependence.
This issue also will be investigated.

In this paper we consider a weak convergence for the linear random field generated
by associated random variables for the case p = 2 under finite second moment condition.
In the future we will study weak convergence for the linear random fields for the case
p > 3 under the stronger moment condition by using invariance principle for p-parameter
arrays of associated random variables in Bulinski and Keane (1996).
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