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A General Mixed Linear Model with Left-Censored
Data

11 Do HaV

Abstract

Mixed linear models have been widely used in various correlated data includ-
ing multivariate survival data. In this paper we extend hierarchical-likelihood(h-
likelihood) approach for mixed linear models with right censored data to that for
left censored data. We also allow a general random-effect structure and propose the
estimation procedure. The proposed method is illustrated using a numerical data
set and is also compared with marginal likelihood method.
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1. Introduction

In biomedical research, correlated survival data in the form of repeated, recurrent or
multiple event times by clusters including subjects are frequently encountered (Hougaard,
2000; Ha et al., 2001). The correlation can be analyzed via random effects (Laird and
Ware, 1982; Hougaard, 2000; Ha et al., 2002). However, the data are usually censored
due to limited period of observation, which can lead to a complicated inference. In almost
cases, right censoring is common, but left censoring sometimes occurs. In this paper we
are interested in case of left censoring, with correlation between the event times. An
observation is said to be left censored if the exact value of the observation is unknown,
but is known only that the observation is smaller than some given value. For example, in
a study of age at the onset of puberty in female rats from the same litter, the records may
start after puberty has already occurred in some individuals. In such a case, the event of
interest is not observed and the record is left censored and can be also correlated because
of data from the same litter (Carriquiry et al., 1987). As another example, there occurs
a left censoring due to the lower limit of detection in a longitudinal study with repeated
measures of human immunodeficiency virus(HIV) viral load, the primary measure of HIV
infection (Hughes, 1999; Jacqmin-Gadda et al., 2000). )

For the analysis of left or right censored correlated data, mixed linear models(MLMs)
have been used as an alternative of frailty hazard models (Hougaard, 2000), in which the
random effect acts linearly on each individual’s survival time, thus making the interpreta-
tion of the fixed effects easier than in the frailty models (Carriquiry et al., 1987; Klein et
al., 1999; Jacqmin-Gadda et al., 2000). In particular, the fixed-effect estimates in MLMs
are relatively robust against the violations of the model assumptions such as normality
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of random-effect distribution (Ha et al., 2002). For the inferences of MLMs with the
left-censored data, several authors have proposed marginal likelihood(ML) methods such
as Monte Carlo EM (Hughes, 1999) because of the required intractable integrations.
Recently, Thiébaut and Jacqmin-Gadda (2004) also presented the use of SAS PROC
NLMIXED based upon Gauss-Hermite quadrature(GHQ). However, the ML methods
are still computationally intensive and not practical, particularly for mult-component
MLMs including mult-level or crossed structures (Gueorguieva, 2001; Ha and Lee, 2005).

Lee and Nelder (1996, 2001) have introduced h-likelihood which avoids the intractable
integrals necessary to obtain the marginal likelihood. They have showed that the h-
likelihood provides a statistically efficient procedure for models(e.g. hierarchical gener-
alized linear models) with various random-effect structures. Ha et al. (2002) and Ha and
Lee (2005) have also developed h-likelihood procedures for fitting one random component
and multi-component MLMs with correlated survival data, respectively. Furthermore,
Ha et al. (2007b) proposed the h-likelihood method on genetic MLMs for twin survival
data under left truncation. In particular, for the MLMs the h-likelihood provides a con-
ceptually simple, numerically efficient and reliable inferential procedure. However, the
h-likelihood inferences have been studied in the presence of right censoring only. In this
paper we extend the h-likelihood procedure of MLM under right censoring to that of left
censoring. Here we allow a correlation between random effects. The proposed method
is also compared with marginal likelihood method (Thiébaut and Jacqmin-Gadda, 2004)
using SAS NLMIXED.

In Section 2 we describe a general ML M under left censoring. In Section 3 we propose
the h-likelihood estimation procedure, leading to the use of the pseudo-variable. The
proposed method is demonstrated using a numerical data set in Section 4, followed by
discussion in Section 5.

2. The Model

Let T;; (¢ = 1,...,q, j = 1,...,m;, n = Y_,n;) be the survival time for the j*
observation of the i** cluster and C;; be the corresponding left-censoring time. The
observable random variables are

Yi; = max(Ty;, Cij) and 6;; = I(Ti; = Cy),

where I(-) is the indicator function.
For T;; we consider a general MLM, which allows the correlation between random
effects: fori=1,...,qand j=1,...,n;,

Tij = ;8 + 2;U; + €45, (2.1)
where z;; = (1, 451, ..., Zijp)" is a vector of fixed covariates and 8 is a (p+1) x 1 vector
of fixed effects. Here U; = (Ui1,...,U;q)" is a d-dimensional vector of random effects

from the * cluster, which is associated with a vector of random covariates z;;. Note
that U; ~ N(0, A;) and €;; ~ N(0, 02) are assumed to be independent and that the
covariance matrix A; = A;(0) depends on # denoting a vector of unknown parameters.
For example, in case of bivariate normal distribution(d = 2) A;(#) has three parameters
with 6, = ¢, 6, = 03 and 05 = 012; as a special case 4;(0) = diag(6,, 62) becomes a
diagonal matrix if 3 = 0(i.e. the correlation is zero).
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In model (2.1), z;; is often a subset of z;;. If z;; = 1 for all 4, j and U; = Uy, then
the model (2.1) with 2{;U; = U reduces to a random 1ntercept MLM (Ha et al., 2002).
Furthermore, if z;; = (1 z:1)t and U; = (Uo, Uir)*, then 2t Ui = Uio + Uiz and the
corresponding model becomes a random intercept (Uz()) and slope (U;1) MLM (Thiébaut
and Jacqmin-Gadda, 2004).

Notice that the T;; can be expressed on some suitably transformed scale, e.g. log(T3;)-
If the log-transformation is used, the MLM (2.1) becomes an accelerated failure-time
mode! with random effects.

3. Estimation Procedure

Following Ha et al. (2001, 2002), the h-likelihood for the model (2.1), denoted by h,
is defined by

(B, 8, o?) sz Zezz, (3.1)

where

log(2m02) + (mi;)*
2

brij = 0155(B, 025 yij, 85 |wi) = —6i; + (1 — 6;5) log{®(m.;)}

is the logarithm of the conditional density function for Y;; and é;; given U; = u; and
1 1y -1
by = o;(0; u;) = —§{logdet(27rAi(9))} — 5“:‘Ai(0) u;

is the logarithm of the density function for U;.
Note here that

E(Y;; | Ui = ug) # pejs
where p;; = E(Ty; |U; = u;) = z};6 + z};u;. Following Ha et al. (2002) and Ha and
Lee (2005), we can show that the h-likelihood method is equivalent to the use of pseudo-
responses y;;, given by

i = E(Ti; | Yij = wij, 615, Ui = w)
= Yij0i; + Bii (1 — ds5), (3:2)
which is an extension of the pseudo-responses under right censoring to left censoring.
Here, Bi; = E(Tiy; |Tij > yij, Us = w) = pij — 0V(my;), V() = ¢()/2(:), ¢ and
® are the density and cumulative distribution functions for N(0,1), respectively and
mi; = (Yij — Wij)/0e. It can be shown that
E(y}; | Ui = wi) = ;-

Thus, the h-likelihood method implicitly applies the EM-type algorithm to the h-likelihood
procedure (Ha and Lee, 2005).
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3.1. Estimation of fixed and random effects
Given the dispersion components ¢ = (02, §!)¢, the maximum h-likelihood estima-

tors(MHLEs) of 7 = (8%, u*)" with u = (u},...,u})" are obtained by solving

Oh 1
_aﬁk = ;— Z {6ijmij — (1 - (52']')V(mij)}.’1}ijk = 0, (k = 1, o, P + 1) (33)
€ i

and

oh 1 _ .
0w, o Z {0imi; — (1= 0:5)V(mij)} — A7 =0, (i=1,...,9). (34)
2 € ]

Substituting (3.2) into the two MHL equations (3.3) and (3.4) reduces them, respectively,
to

1
ﬁZ(yfj—Nij)mijk=0, (k=1,...,p+1)
€ ij
and )
=2 (W —my) —ATw=0, (i=1,...,9).
€ J

Thus, the MHLEs 7 = (Et, at)! given 6 and y* are obtained by solving Henderson’s
(1975) mixed-model equations iteratively with pseudo-response variables y*:

XtX X'z B\ _ [ Xty (3.5)

Z'X Z'Z+A o)\ Z% ) )
where X and Z is the n X (p+ 1) and n x ¢ model matrices of z;; and z;;, respectively
and y* is the n x 1 vector with ij** element y}; and A = 62A~" with the g x g block
diagonal A = blockdiag(A,, ..., A,).

From (3.3) and (3.4) the asymptotic covariance matrix (Lee and Nelder, 1996; Ha, et
al., 2002) for 7 — 7 is given by H*~! with

H*=-2_ = —H, (3.6)

where
e XtwXx xXtwz
T\ Z2ZWX Z'WZ+ A )

Here, W = diag(w;;) is the n x n diagonal matrix with the ij** weight element
Wiy = (Sij —(l—dij)ﬁ(mij) and £(m,~j) = —V(m,J){V(m”)-i-m,]} SO, the upper left-hand
corner of H*~! in (3.6) gives the variance matrix of 3:

var(B) = oc2(X'=71X)7?,

where ¥ = W-1 4+ ZA- 12t
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3.2. Estimation of dispersion parameters

For the estimation of the dispersion parameters ¢ = (02, '), we use Lee and Nelder’s
{2001) adjusted profile h-likelihood, defined by

pr(h) = [h - élogdet{WH

) , (3.7)

=7

where h and D(h, 7) = —0?h/87? = H* are given in (3.1) and (3.6), respectively and
7= 7(y) = (B'(y), @'(¥))!. Note that p,(h) is an extension of restricted likelihood
{Patterson and Thompson, 1971) of MLM without censoring to that with censoring (Ha
et al., 2002). The restricted maximum likelihood(REML) estimator for ¢ are obtained
by solving iteratively

Op(h)

o
Firstly, Op, (h)/0c? = 0 gives the REML estimator for o2

= {.

S5 _ W - -R
© - (ptg-m)’

where i = X8 + Z@, ng = i wij and o = oltrace{ H~'(0H/00?)}. Secondly, the
REML estimators for ¢ are obtained by solving the estimation equations

3;07(!5)__1 1 [ OA 1, (0471 1 4 Q_I_{_ _
5 = 2trace{A ) +—2—u 50 u—2trace H 50 ={,

where 0A™! /00 = ~A~1(8A/00)A~" and for the solutions we use the Newton-Raphson
method. Appendix IT of Ha et al. (2002) gives the formulation for the 3H /8. Here the
Ju /Oy term should be allowed (Ha and Lee, 2005).

Note that since we cannot observe all the yiy's due to censoring, we substitute esti-

mates, say 5;‘;, for them in each iteration. For the corresponding fitting algorithm we
follow that of Ha et al. (2002).

Lee and Nelder (2001) showed that in MLMs without censoring the h-likelihood
method provides the maximum likelihood estimators for fixed effects (using Hender-
son’s (1975) equations) and the REML estimators for dispersion parameters. Now we
see that for MLMs with left-censoring it implicitly implements an EM-type algorithm
by replacing unobserved responses T;; with E(T3;|Yi; = yij, 6i5, Uy = u;) in the esti-
mating equations (3.5). With the use of h-likelihood the numerically difficult E-step or
integration is avoided by automatically imputing the censored responses to Y3

4. Numerical Example

The proposed method is illustrated using a numerical example, based upon a simu-
lated data set from Lyles et al. (2000) and Thiébaut and Jacgmin-Gadda (2004). The
data(n = 250 with ¢ = 50 and n; = 5) are generated from a random intercept and slope
MLM as a special case of the model (2.1):

Tij = (Bo + Uio) + (61 + Usr)xij1 + €5, (4.1)
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Table 4.1: Results on the estimation of parameters under three ML Ms

Factor level

Model  fBy(SE) 41(SE) 52 &2 512 52 p(h) pr  AIC
True  3.00 0.50 050 0100 -0.10 020
Ml 295(0.12)  0.50(0.049) 0.54 - 054 —25526 2  514.52

M2 2.96(0.12) 0.49(0.057) 0.53 0.058 - 0.24 —252.64 3 511.28
M3 2.95(0.13) 0.50(0.062) 0.67 0.092 —0.11 023 —250.83 4 509.66
M3* 2.94(0.13) 0.51(0.062) 0.66 0.089 —0.11 0.23
Note: SE, the estimated standard error; M3*, results (Thiébaut and Jacqmin-Gadda, 2004) of M3
using SAS PROC NLMIXED

where x,;; is the j** repeated time of the it* subject, €5 ~ N(0, 02) and

(o )~{(0)- (2 %)}

Here, the true parameters are 8y = 3, 81 = 0.5, 0 = (07, 02, 012)* = (0.5, 0.1, —0.1)*
and 02 = 0.2. In the simulated data set, the left-censored observations were replaced by
the value(i.e. 2.5) of the threshold, leading to 15.2% left-censoring rate. The data are
available at http://www.blackwellpublishing.com/rss/Volumes/Cv49p4.htm.

We considered the three submodels of (4.1):

M1 : one-component (U;o) MLM,
M2 : two-components (U, U;;) MLM with 015 = 0,
M3 : two-components (U, U;;) MLM with 15 # 0.

For the model fitting we used SAS/IML based on the h-likelihood procedure in Section 3.
The results are presented in Table 4.1. The two nested models(M1 and M2) ignoring one
random component or covariance(i.e. correlation) work well for the estimation of fixed
effects, Bo and 5;. However, in M1 and M2 the standard errors for estimator of fixed slope
By are underestimated compared to that of M3 and dispersion-parameter estimates are
biased; in particular, the larger biases occur from o2 in M1 and o2 in M2, respectively.
Overall, the estimates in true model(M3) perform well. For the M3 the h-likelihood
estimation results are very similar to the ML results (Thiébaut and Jacqgmin-Gadda,
2004) using SAS PROC NLMIXED.

Furthermore, we tried to confirm the selection of true model(M3) among the three
models considered. For this we used the Akaike information criterion(AIC) method (Ha
et al., 2007a) based on the restricted likelihood p.(h) in (3.7), given by

AIC(Td) =T4+ 2pT,

where T = —2p, (h) and pr is the number of dispersion parameters. We select the model
with smallest AIC as the best model among these models. Note here that if the AIC
difference is larger than 1 ~ 2 it is considered to be significant and that if the difference
is less than 1 it is not (Sakamoto et al.,, 1986; Ha et al., 2007a). The AIC difference
between M1 and M2(M2 and M3) is 3.24(1.62), respectively. Thus, under this empirical
criterion we find that the AIC selects M3 as the final model.
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5. Discussion

We have showed that the h-likelihood procedure for MLM with right censoring can
be straightforwardly extended to the left-censoring. We have also found via an empirical
study that the proposed method performs well. In particular, we have confirmed that the
h-likelihood and marginal likelihood results are about the same. However, the simulation
study in Section 4 is somewhat limited because it uses a simple setting such as a sample
size and a parameter value. Thus, the performance of proposed method may be potential.
As a further work, it is required to compare both results using simulated data from various
sample sizes and parameter values.

The h-likelihood method can be easily applied to various random-effect models be-
cause it avoids an intractable integration. However, the use of ML method can be limited;
for example, for multi-component models with nested or crossed random effects the ML
requires a numerically difficult integration, while the h-likelihood does not (Thiébaut and
Jacqmin-Gadda, 2004; Ha and Lee, 2005). Furthermore, the h-likelihood method is also
useful in selecting a suitable model among a set of candidate models, as shown in Section
4: see also Ha et al. (2007a).

Though not reported here, we have found that our method can be also extended to
doubly censored data (i.e. both left and right censored data, Turnbull, 1974; Hughes,
1999).
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