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Use of Pseudo-Likelihood Estimation in Taylor’s
Power Law with Correlated Responses

Bumhee Park?, Heungsun Park®

Abstract

Correlated responses have been widely analyzed since Liang and Zeger (1986)
introduced the famous Generalized Estimating Equations(GEE). However, their
variance functions were restricted to known quantities multiplied by scale parame-
ter. In so many industries and academic/research fields, power-of-the-mean variance
function is one of the common variance function. We suggest GEE-type pseudolike-
lihood estimation based on the power-of-the-mean variance using existing software
and investigate it’s efficiency for different working correlation matrices.

Keywords: Generalized estimating equations; GEE; power-of-the-mean; Taylor’s power
law; linear mixed model.

1. Introduction

In many disciplines such as biology, immunology, insectology, zoo-ecology and econo-
metrics, the variances increases as the mean does according to the power of the mean.
This powef-of-the-mean{POM) variance function is one of the common variance struc-
tures in heteroscedasticity (Carroll and Ruppert, 1988). Moreover, it is not only a general
variance function for clinical data (Davidian and Giltinan, 1995; Carroll et al., 1995), but
also a wide spread animal behavior pattern in analyzing population dynamics of pest or
animal, which is named Taylor’s Power Law (TPL: Taylor, 1961; Perry, 1981; Park and
Cho, 2004), since Taylor (1961) introduced the famous behavial pattern simply denoted
by

V = aub, (1.1)

where V is the variance, p is the mean of subject counts and a, b are the species-specific
unknown parameters.

Even though Taylor (1961) and many his successors have introduced various estima-
tion methods for a and b, their approaches were limited to using simple linear regression
with pairs of sample mean/variance, which is

log (s7) = loga + blog(z;) (1.2)
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out of different quadrats, (Z;, s7), i = 1,2,...,q, for ¢ quadrats.

However, the estimates a and b have been occasionally different for different geolog-
ical regions, other environmental or physiological status (Southwood, 1978; Davis and
Pedigo, 1989), which contradicts to the fact that the parameters are species-specific. This
problem causes researchers to avoid to use TPL unless they have the same estimates and
so the estimated TPL parameters were restrictly used on limited places or situations.

Park and Cho (2004) suggested quasilikelihood and variance function(QVF) method
to estimate POM parameters{or TPL parameters), where they adopted quasilikelihood
estimation (Wedderburn, 1974) in order to use covariate information within power-of-
the-mean variance structure. The main sketch of QVF estimation is as follows:

Suppose x; is a p x 1 regressor vector and 3 is the corresponding coefficient vector.
The mean count of animal/pest in the it* observation, y; is given by

log(ps) = = 3 (1.3)

and with a light of TPL the variance can be expressed as

; b
V() = ap = a (exp(xi B)) - (1.4)
Given a and b, B can be estimated by setting the quasi-score to zero:
UB)=D'VH(Y —p) =0, (1.5)

where D is an n x p derivative matrix of p defined as D;; = 0p;/808;, V is the n X n
variance matrix, V = diag{v(u;), - - -, v(in)}, with v(;) = ap? and u; = exp(z? 8).

Also, once an estimate of 8 is obtained, the coefficients of the variance structure,
a and b, can be estimated by using a pseudolikelihood. Park and Cho {2004) devised
SAS macro{SAS institute) including two GENMOD procedures to estimate §, a and b
simultaneously; nevertheless, as quasilikelihood assumes the independence of responses,
their approach can be used only for independent responses.

In order to extend Park and Cho (2004)’s method to correlated count data in the same
analogy, we use generalized estimating equation for estimating § and the multivariate
pseudolikelihood for estimating a and b. The purpose of this paper is to compare QVF
estimator and a newly presented GEE-type estimator for a and b in correlated count
responses and to study their robustness property as working correlation changes.

In the next section, we use generalized estimating equation and multivariate pseu-
dolikelihood{MPL) for estimating POM parameters in correlated data. Section 3 shows
results of simulation for comparing it with QVF method between GVF and QVF. Con-
clusion and final remarks are in Section 4.

2. GEE and Variance Function(GVF) Model

Researchers are more often interested in analyzing temporal/spatial correlated data.
Liang and Zeger (1986) formalized an approach using generalized estimating equations
(GEE) to extend quasilikelihood scoring equation to a multivariate version. A basic
feature of GEE is that the joint distribution of a subject response vector y;, for the it*
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subject, 7 =1,2,...,k, does not to be specified. Instead, the marginal mean and variance
need to be specified with within-subject correlation assumption such as

k

> DLV (s — wi) =0, (2.1)
f=1

for k subjects where Dy; = Ou;/98 and
Vi = A2 R(a) A, (2.2)

where A;(0) = diag{v(u1, 6), v(piz, 8),...,v(1tin,, )} and R(a) is a marginal correla-
tion matrix.

For the estimation of 3’s in yu;, Eq. (2.1) is solved; and they proposed method of
moment(MOM) estimators for the nuisance parameters ¢ and « given £.

Liang et al. (1992) generalized the MOM estimation of ¢ and & by suggesting another
estimating equations such as

k

ZD Vo l(si —03) =0, (2.3)

where s; =vec{(y; — pi)(yi — p:i)T}, 0 = E(s;) and Dy; = 00;/8a. Eq.(2.3) can be
expressed as a form of joint estimating equation with Eq. (2.1),

ZD7 ( . _Z ) =0, (2.4)

where now

O
T
D;=| 96 oo (2.5)
0 daT
and
- var(y) 0 _{ Vi 0
Vi= ( 0 var(s) >“ ( 0 Vi ) (26)

This method is referred as GEEl (Liang et al., 1992). In a context of power-of-
the-mean variance function, we can formalize the variance as v(u;;,6) = a(u;;)® with
6 = (ab)”. In short, for the correlated count data, the power-of-the-mean variance
function can be estimated by GEE1 with v(u;;, 8) = a(u;)°.

The characteristic feature of GEEL is to solve quadratic estimating equations for vari-
ance parameter, 8, correlation parameter, a. Eq.(2.3) is easily shown as a multivariate
version of pseudolikelihood score function because it corresponds to the first derivative of
the quadratic exponential family loglikelihood deduced from gaussian working assump-
tion (Liang et al., 1992).
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Pseudolikelihood is to use normal likelihood even though the underlying distribu-
tion is not normal. Since Whittle (1961) introduced the concept in time series analysis,
pseudolikelihood esimation is preferred to the method-of-moment for estimating variance
parameters in GEE type estimating equations not only because it has smaller asymptotic
variance {Crowder, 1985) but also it minimizes some object function referred as pseudo-
likelihood (Crowder, 1995) and provides the robustness to 3 estimation against working
correlation misspecification (Wang and Carey, 2003, 2004).

Therefore, we suggest a GEE1 type estimating equation for 8, &, a and b such as
in Eq. (2.4) adopting pseudolikelihood method, which is referred to as Generalized esti-
mating equation and Variance Function(GVF) estimation in this paper contrasting with
Quasilikelihood and Variance Function(QVF) estimation in Park and Cho (2004). Good
thing about GVF is to use the commercial software, NLINMIX macro(SAS Institute.)
with a little extra programming modifications.

In origin, NLINMIX macro was developed for the purpose of estimating nonlinear
mixed models by Littell et al. (1996) and consists of two iterative steps: (1) creating
pseudo-data from modified residuals and (2) calling PROC MIXED procedure designed
for linear mixed models.

Suppose y; be a response vector and ¢; be an error. The nonlinear model is defined
as

yi = f(zi, B) + & (2.7)
and by Taylor’s expansion at ,3
N [0f(B A
yi=f (Ii, ﬂ) + -—8(ﬂ—> (ﬁ - ﬂ) + €, (2.8)
which means
. of (B)\ . 3
v f (2 B) + -%2 p= (%%)ﬂm (29)
and it turns into a linear model,
y; = X{B+€, (2.10)

where y} = y; — f(zs, B) + (8F(B)/0B)B, X} = (8f(B)/8B) and € is an error term for
the pseudo response y; .
The final estimates 3, & and 8 = (@ 5)7 in NLINMIX macro solve a GEE as follows:

fj XV (v - X0B) =0, (2.11)

k

X My (00) = =
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Because PROC MIXED provides maximum likelihood estimators, €, 3, «, under normal
assurmption, these estimating equations are equivalent to

Ek:X.*TV;l (i = f (= 8)) =0, (2.13)

iaz y”ﬁ 6, o) (8,68) =0, (2.14)

%

which is GEEL1 as in Eq. (2.3) using multivariate pseudo-likelihood estimation for o and
8. The followings are the algorithm of the suggested GVF modeling:

[STEP 1] Choose an initial value of b (b = by )(i.e. by = 1.0)

[STEP 2] Suppose E(y | :c) f(z, B), V(y|z)=a(f(z, )" and correlation structure
R(a). And evaluate 3, & by using NLINMIX macro and record log-likelihood, L{by)
corresponding to this evaluation.

[STEP 3] Increase by within specific interval and redo [STEP 2] to record log-likelihood,
L{by).

[STEP 4] Iterate [STEP 2]~[STEP 3] for the various by from 0.5 to 2.5.
[STEP 5] After fitting L(bo)’s onto quadratic curve, obtain b maximizing L(bg) .

[STEP 6] By using b from [STEP 5], assume that E(y|z) = f(z, 8), V(y|z) =
a(f(z, B))® and obtain 3, &, & using NLINMIX macro.

Within these steps, [STEP 4] is a profile-likelihood type approach in order to maximize
the pseudo-likelihood given the different by values. And the range of by, [0.5,2.5], seems
reasonable because in most areas the common over-dispersion is proportional to u!? ~

2.5
[T

3. Simulation

Since Liang and Zeger (1986) insisted robustness of 3 estimation with different work-
ing correlation structures, there has been many simulation studies associated with work-
ing correlation in GEE.

Liang et al. (1992) illustrated GEE1 and GEE2 have § consistency regardless of work-
ing correlation like as Liang and Zeger’s GEE. But they also suggested that unbalanced
repeated responses and misspecified covariance structure led 3 estimation to less efficient.
In other studies, if working correlation cannot be expected correctly, to use independence
working correlation can be more effective for 8 estimation (Pepe and Anderson, 1994;
Fitzmaurice, 1995). Mancl and Leroux (1996) found the choice of R(«), working corre-
lation, cluster size and correlation degree might have an impact on 3 efficiency, so that
it is recommended to use Independence structure as a safe strategy in GEE (Sutradhar
and Das, 1999). As for pseudolikelihood estimation combined with GEE1 as in GVF,
Wang and Carey (2003) compared MOM with pseudolikelihood and recommended to use
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Table 3.1: The relative efficiency of GVF to QVF for estimating 8y with different working
correlation matrices(8y = 1.0, 8; = 4.0, a = 1.5, b= 1.5).

GVF
sub. QVF TND cs AR TOEP()
The true correlation is independent
25 1.000 5.250 5.250 5.236 5.250
100 1.000 4.728 4.728 4.682 4.682
500 1.000 4.859 4.835 4.859 4.859
The true correlation is CS with 0.3
25 1.000 4.259 4.269 4.279 4.279
100 1.000 3.927 3.927 3.892 3.892
500 1.000 4.023 4.004 3.967 3.986
The true correlation is CS with 0.8
25 1.000 2.910 3.734 3.660 3.573
100 1.000 2.861 3.613 3.580 3.485
500 1.000 2.871 3.527 3.475 3.457

Table 3.2: The relative efficiency of GVF to QVF for estimating 5, with different working
correlation matrices(8, = 1.0, 81 = 4.0, a = 1.5, b= 1.5).

GVF
sub. QVF IND cs AR(D) TORP(2)
The true correlation is independent
25 1.000 11.887 11.863 11.838 11.863
100 1.000 10.480 10.480 10.396 10.396
500 1.000 10.875 10.829 10.829 10.829
The true correlation is CS with 0.3
25 1.000 9.745 9.725 10.526 9.704
100 1.000 8.760 8.760 8.688 8.688
500 1.000 9.094 9.017 8.902 8.940
The true correlation is CS with 0.8
25 1.000 5.934 7.398 7.184 7.378
100 1.000 5.705 7.037 6.915 6.983
500 1.000 5.779 6.923 6.737 6.961

pseudolikelihood with AR(1) structure for more effective § estimation. In spite of many
simulation studies for GEE, GEEL, or pseudolikelihood, the prime interests lie on the
estimation not on the variance parameters, ¢ and b.

In this simulation, we compare GVF estimator with QVF estimator for variance
parameters specially focused on power-of-the-mean variance structure with correlated
count data. Additionally, we investigate the robustness of variance parameter estimation
as working correlation changes.

For simulation, we generated lognormal poisson mixture responses, y;; 4" observa-
tion of the i** subject) having mean, exp(1.0-+4.0z;;) and variance, a(exp(1.0+4.0z;;))°,
with (a,b)=(1.5,1.5) and z;; = j for each subject. To make observations correlated,
Compound Symmetry(CS) correlation structured is considered within a subject (p =
0, 0.3, 0.8). Madsen and Dalthorp (2007)’s algorithm to build correlated count data was
used.

The simulation result on Table 3.1~3.2 illustrate that GVF is more effective than
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Table 3.3: The relative efficiency of GVF to QVF for estimating a with different working
correlation matrices(8p = 1.0, §; = 4.0, a = 1.5, b = 1.5).

GVF
sub. QVF TND cs AR(D) TOEP(2)
The true correlation is independent
25 1.000 0.705 0.700 0.408 0.394
100 1.000 1.000 0.786 0.162 0.161
500 1.000 1.000 0.183 0.230 0.030
The true correlation is CS with 0.3
25 1.000 1.000 0.639 0.549 0.671
100 1.000 1.000 0.597 0.208 0.271
500 1.000 1.000 0.169 0.173 0.048
The true correlation is CS with 0.8
25 1.000 1.000 0.513 0.500 0.984
100 1.000 1.000 0.261 0.326 0.415
500 1.000 1.000 0.056 0.054 0.079

Table 3.4: The relative efficiency of GVF to QVF for estimating b with different working
correlation matrices(fy = 1.0, S =4.0, a = 1.5, b=1.5).

. GVF
sub. QVF IND TS AR(D) TOEP(3)
The true correlation is independent
25 1.000 11.456 11.456 12.291 11.419
100 1.000 1.000 5.772 5.562 5.602
500 1.000 1.000 0.088 0.771 0.771
The true correlation is CS with 0.3
25 1.000 1.000 9.163 11.004 9.256
100 1.000 1.000 3.680 5.975 3.758
500 1.000 1.000 0.483 0.492 0.497
The true correlation is CS with 0.8
25 1.000 1.000 5.555 5.759 6.395
100 1.000 1.000 0.915 8.085 1.142
500 1.000 1.000 0.087 3.586 0.112

QVF because GVF permits the within-subject correlation whereas QVF deals with only
independent observation. In addition, GVF estimator is better than QVF regardless
of the chosen type of working correlation. It is noteworthy that, in spite of the same
independence assumption, GVF-IND in a multivariate approach outperforms QVF in
univariate version and IND structure is nearly effective as other non-diagonal correlation
matrices such as AR(1), TOEP(2) and CS.

Moreover, Table 3.1~3.2 illustrates not only that the efficiency of GVF over QVF
for estimating mean parameter but also that the independence working correlation is
no longer effective than other working structures, which contradicts to the results by
several authors (Pepe and Anderson, 1994; Fitzmaurice, 1995; Mancl and Leroux, 1996;
Sutradhar and Das, 1999), in which they used MOM estimators are not pseudolikelihood.

Another interesting aspect is that GVF-IND is outperformed by other correlation ma-
trices if responses are highly correlated(p = 0.8). Therefore we could say that GVF-IND
is used for low or moderate correlation, while other non-diagonal correlation structure
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Table 4.1: The estimates of parameters in GVF modeling for epileptic seizure count data.
GVF

parameter IND Cs AR(D) TOEP(2)
Tntercept 0.557 0.550 0.482 0.498
Trt ~0.196 ~0.195 ~0.225 ~0.220
Base 0.026 0.026 0.026 0.027
Age 0.017 0.017 0.019 0.018
a 0.954 1.404 0.970 0.893
b 1.862 1.812 1.849 1.884

should be considered with highly correlated data for better G-estimation.

On the contrary, Table 3.3 ~ 3.4 show that QVF is better than GVF for estimating
a variance parameter, a, while MSE(bgy r) is larger than MSE(EQV r). However, the
differences are statistically negligible(significance level =0.05) and as the number of sub-
jects increases, QVF becomes more effective then GVF even in estimating b, so that we
may conclude that QVF is better than GVF for estimating a, b in POM variance function
whether the responses are correlated or not.

4. Example

Breslow and Clayton (1993) reanalyzed the same data that Thall and Vail (1990) did
with introducing the their GLMM method. The clinical trial of 59 epileptics who were
under a new drug(trt =1) and a placebo(trt =0) as an adjuvant chemotherapy. Baseline
data included the number of epileptic seizures recorded in the preceding 8-week period.
The ages of subjects are also considered. A longitudinal study was performed with
2-weeks intervals, and we reanalyze this data in the light of the power-of-the-variance
modeling with correlated responses. The general model considered here is

log pijk = Bo + Bi(Trt); + B2(Base);; + G3(Age)i;, (4.1)

where y;;;, represents the epileptic seizure counts for kP visit of i subject in j** group.
And the relevant variance function is

V(%i5x) = a(exp(piz))’. (4.2)

Therefore, Table 4.1 presents the result obtained with GVF with different working cor-
relation matrices(AR(1), CS, TOEP(2)).

5. Conclusion

We compared GVF estimators with QVF estimators for POM variance function with
correlated or independent count data. Whereas GVF is more effective in estimating mean
parameter, 8, QVF is superior to GVF even for the correlated case in estimating vari-
ance parameters. For the robustness of GEE1 estimators combined with pseudolikelihood
estimators not method-of-moment estimators in POM variance structure, working corre-
lation does not influence the mean parameter, 3 for low or moderate correlated responses,
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but for highly correlated case, GVF-CS/AR(1)/TOEPF(2) outperformed GVF-IND as
well as QVF. Finally, for variance parameter, a and b, QVF estimator is no less effective
than GVF.

When the different a, b set-ups such as (a=1.0, 1.5, 1.8, b=1.0, 1.5, 1.8) were applied,
the similar results were obtained but we eliminated the tables for avoiding redundancy.

In conclusion, we recommended to use GVF estimation with any non-diagonal working
correlations for 3 estimation and highly correlated data whereas GVF-IND for low or
moderate correlation. Concerning variance parameter, a and b (v;; = a(u;;)®), QVF
developed for independent outcomes may be used even for highly correlated data.
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