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Semiparametric Kernel Poisson Regression for
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Abstract

Mixed-effect Poisson regression models are widely used for analysis of correlated
count data such as those found in longitudinal studies. In this paper, we consider
kernel extensions with semiparametric fixed effects and parametric random effects.
The estimation is through the penalized likelihood method based on kernel trick
and our focus is on the efficient computation and the effective hyperparameter
selection. For the selection of hyperparameters, cross-validation techniques are
employed. Examples illustrating usage and features of the proposed method are
provided.
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1. Introduction

Count data are increasingly common in fields such as medicine, biology, criminology,
political sciences and marketing. The ordinary least squares method for count data results
in biased, ineflicient and inconsistent estimates (Long, 1997). The Poisson regression
model provides an attractive solution for the analysis of count data if observations are
independent, <.e., not longitudinal or clustered (Winkelmann, 2003). However, it is often
the case that subjects are observed nested within clusters or are repeatedly measured. In
this case, the ordinary Poisson regression model assuming independence of observations
causes problems since observations from the same cluster or subject are usually correlated.

For data that are clustered and/or longitudinal, mixed-effect regression models are
becoming increasingly popular - Hedeker and Gibbons (2006), Long (1997), McCullagh
and Nelder (1983), Wu and Zhang (2006). Mixed-effect models constitute both fixed and
random effects. In clustered data, subjects are clustered within an organization such as
a hospital, school, clinic or firm. In longitudinal data where individuals are repeatedly
assessed, measurements are clustered within individuals. For clustered data the random
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effects represent cluster effects, while for longitudinal data the random effects represent
subject effects. There has been much work done on mixed-effect models for continuous
responses and an increasing amount of work has focused on mixed-effects models for
non-continuous response data (Hedeker and Gibbons, 2006).

For count data, various types of mixed-effect Poisson regression models have been
proposed by Gu and Ma (2005), Long (1997), Wu and Zhang (2006). In this paper we
propose a semiparametric mixed-effect kernel Poisson regression model for the analysis
of longitudinal count data. The proposed model is derived by employing the penalized
likelihood method based on kernel tricks in Vapnik (1995). For the easy selection of
appropriate hyperparameters to achieve high generalization performance, we propose
cross-validation techniques, which use a quadratic loss function instead of the idea of
exponential family unlike Yuan (2005) and Shim et al. (2007). The rest of this paper is
organized as follows. In Section 2 we describe kernel Poisson regression, which is based
on the penalized negative log-likelihood. In Section 3 we consider mixed-effect kernel
model with semiparametric fixed effects and parametric random effects. In Section 4 we
propose GCV function for the model selection. Section 5 presents simulation study and
one real data example to illustrate our method. In Section 6 we give the conclusion.

2. Kernel Poisson Regression

In Poisson regression it is assumed that the response variable y; € {0,1,2,...}, num-
ber of occurrences of an event, has a Poisson distribution given the input vector =; € R?,

e @) (e, )V

, 1=1,2,...,n. (2.1)
yi!

p(y:) =
The negative log-likelihood of the given data set can be expressed as(a constant term is
omitted)

Up) = % > {ul@s) — yilog (=) }. (2.2)
i=1

We write the canonical parameter(logarithm of u(x;)) as n(x;), then the negative log-
likelihood can reexpressed as

1 n
{n) =— {e"(zi) — yin(x; } 2.3
() =~ ; n(:) (2.3)
A nonparametric estimate of the canonical parameter of a Poisson process based on
penalized likelihood smoothing spline models was recently studied by Yuan (2005). We
now consider a nonlinear “kernelized” variant of Poisson regression model. The canonical
parameter given x; is estimated by a linear model, n(x;) = by + w? ¢(x;), conducted
in a high dimensional feature space. Here the superscript © denotes vector or matrix
transpose. The feature mapping function ¢(-) : R% — R% maps the input space to the
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higher dimensional feature space where the dimension is defined in an implicit way. It
suffices to know and use K (zk, x;) = ¢(xi)  p(x;) instead of defining ¢(-) explicitly.
Note that the identity map ¢ leads nonlinear model to linear model. We focus on the
use of a Gaussian kernel K(zx, z;) = exp(~||@x, — x;]|?/0?) in the sequel.

Then the estimate of canonical parameter n is obtained by minimizing the penalized
negative log-likelihood,

n
taw) = 3 [P0 oy fo +wT g(a)}] + 2 ol (2.4)
i=1
where A is a penalty parameter which controls the trade-off between the goodness-of-
fit on the data and the smoothness of 7. The representation theorem (Kimeldorf and
Wahba, 1971) guarantees the minimizer of the penalized negative log-likelihood to be
n(x;) = bo + kzva for some n x 1 vector o, where k; is the i** column of the n x n kernel
matrix K with elements K(xzg, x;), k,1=1,...,n.
Now the penalized negative log-likelihood (2.4) becomes

tbo, @)=Y {ebo+k?a — yi(bo + kz‘a)} + %aTKa. (2.5)
i=1

It is well known that Newton-Raphson method and the iterative reweighted least squares
(IRWLS) procedure yield the maximum likelihood(ML) estimates for general nonlinear
regression functions for Poisson distributed data. In this paper we use IRWLS procedure
for ease of deriving the ordinary cross validation function for model selection, although
it has a little bit slower convergence rate and a little bit larger possibility of convergence
failure than Newton-Raphson method. Thus, to obtain the ML estimates of by and «, we
set the first-order partial derivatives of the penalized negative log-likelihood (2.5) with
respect to by and a equal to 0 and 0y, i.e., ¢(bg, a)/Oby = 0 and 8¢(by, ¢)/Ocx = 0O,,.
Here 0, and 1,, are the n x 1 vectors of zeros and ones, respectively. We then solve the
following IRWLS equations in matrix notation:

(VTWV + U) B=VvTwy", (2.6)

where V' = (1, K), W = diag(exp(by + ki @), . ..,exp(bo + kL ), B = (bo, aT)T, U
is defined as

uv-|? o7
0, \K
and y* = (y¥,...,y:)7 is the working response vector for

i oxp 1o+ K]
exp <bo + k,Ta)

yr = + (bo + k;‘ra) .

With the optimal values of by and «, the predicted mean function given the input vector
@ is obtained as p(wo) = eP0+k5 ® where ko = (K (x1, o), ..  K(xn, o))t
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3. Semiparametric Mixed-Effect Model

We now consider a semiparametric mixed-effect kernel Poisson regression model for
the analysis of longitudinal count data. Let y;; be the 4 response variable of the it?
subject corresponding to covariate vector x;;, where ¢ =1,2,...,N and j =1,2,...,n,.
Assuming the Poisson process for y;;, we have a Poisson distribution given the input
vector x;; € RP,

e H®ia) (g, 5) v

Yij!

p(yi;) = , 1=1,2,...,n. (3.1)
We write the canonical parameter(logarithm of p(x;;)) as n(xs;). For brevity, we write
p(ij) and n(w;;) as pi; and n;;, respectively. Let @;; = (x];;, £3,;)" be the associated
covariate vector with (pi1, p2) components such that p = p; + p2. Let n;; be the regres-
sion function given x;; and assume that the n;; is related to covariate vector z;; in a
semiparametric form as

T[ij = bo +ﬁ{$1ij + wTd)(inj) + biTZij, fori = 1,2, . ,N, j = 1,2, ceey, Ny, (32)

where bg is the bias, B, is p; X 1 regression parameter vector, ¢(x2;;) is a nonlinear

feature mapping function, z;; is ¢ x 1 random effect covariate vector and b; is ¢ x 1

random effect parameter vector from N,(0,B). B is generally unknown yet we are not

particularly concerned with its estimation. For semiparametric model, we assume the

covariates @1;; in the parametric part of the regression function have a linear effect on

n;; and the effect of covariates @2;; in the nonparametric part on 7;; is not specified.
The penalized negative log-likelihood becomes

N n;
£(bo, By, w, b) = ZZ [_yij {bo + Bl x5 + wT P(xai) + biTZij}

i=1 j=1

fehrAlo T o els] 4 Tl + 26TB s, (33)
where b = (b7,...,b%)T and B = diag(B,...,B). Write y; = (Yi1,---,¥ins) >, ¥ =
W, . Ly, N, = Eszl ne and Z = diag(Z,,...,Zy) with Z; = [2i1,-- -, Zin,]7-
Let B3 represent the vector of parameters defined as 3 = (bo, ,3{, aT,bT)T with «; =
(i1, ..., am,)", a = (aF,...,a%)T. Let X represents the N, X p; matrix ob-
tained by stacking in order mfij 's. Let K be the N, x N, kernel matrix consisting
of K(xoik, ®251), ¢ = 1,...,N, k, 1 = 1,...,n;. Then, using kernel tricks in Vapnik
(1995), we can rewrite (3.3) in matrix notation as:

(B) = ~y"VB+ 1%, exp(VB) + 557UB, (3.4)

where V =1y, X1, K, Z].
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And U is defined as
0 0;1;1 071:,71 Oq&q
01’1 OP1 XPp1 OP1 XNn OPx xNg

U= , 3.5
On, On,xp, MK On,xng (3:5)

= 1
oNq Oqum OquNn )‘ZB
for the | x k zero matrix O;«.
We then solve the following IRWLS equations in matrix notation:

(VTWV + U) B=VTWy, (3.6)

where W is a diagonal matrix consisting of elements of exp(V8) and y* = W™ (y —
exp(V B)) + V3 is the working response vector.

4. Model Selection

The functional structures of the semiparametric mixed-effect kernel Poisson regres-
sion is characterized by hyperparameters, the penalty parameters A;, A\» and the kernel
parameter o2. For convenience, we rearrange ¥i;'s using single index and then denote
each response by yx, k= 1,..., N,. To determine hyperparameters, we define the leave-
one-out cross-validation(CV) function for a set of hyperparameters 6 as follows:

1 & -+ (~k) 2
CV(9) = FZ {yk — fig (wk)} ; (4.1)

T =1

where x; is the covariate vector corresponding to y; and ﬂ((;k)(mk) is the estimate of
po(xy) from data without the kt* observation. Since for each candidate of hyperparam-
eter sets, N, of ﬁ((,_k) (xr)’s should be computed, selecting parameters using CV function
is computationally formidable.

By leaving-out-one lemma (Craven and Wahba, 1979), we have

{yk - ﬂ((;_k)(wk)} - {yk - ﬂo(mk)} = foxs) — A5 (@) ~ %ﬁ {yk - ﬂédk)(wk)}

and

Oio(xy) _ Opo(wr) Ofip(xk) Oy _ St (4.2)
Oy Ong(xr) Oyr Ok ’ )

where si4 is the k*" diagonal element of matrix § = V(VIWV + U)"'VTW. Then
the ordinary cross-validation(OCV) function can be obtained as follows:

N 5 2

1 <& yk_ene(mk)>
OCVv(0) = — —— ) 4.3
(0) N;( — (43)
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Replacing sii by their average 1/N,tr(S), the generalized cross-validation(GCV) func-
tion can be obtained as

GCV(9) = —F= : (4.4)

5. Numerical Studies

In this section we proceed simulation study to investigate the finite sample behaviors
of the proposed semiparametric mixed-effect kernel Poisson regression model for count
data. We also use the epileptic seizure data (Thall and Vail, 1990) to evaluate the
proposed model.

5.1. Simulation study

A Monte Carlo simulation study is conducted to assess the performance of the pro-
posed model. Let y;; be the j** response variable of the i** subject corresponding to
covariate t;;, where 1 = 1,2,...,10 and j = 1,...,7. Assuming the Poisson process for
Yij, we have a Poisson distribution with mean u;; given the input variable ¢;;. We shall
fit an Poisson regression model of the form

Nij = lOg,LLij =1+ Zsin(ﬂ'tij) + b;, (5]_)

where t;;’s are generated from a uniform distribution U(0,1) and b;’s are generated from
a normal distribution N(0, 0.01).

The Gaussian kernel is utilized to estimate the nonparametric component of regres-
sion function in this study. The penalty parameters A; = 1, A, = 100 and the kernel
parameter o2 = 0.3 are obtained by GCV function (4.4). Figure 5.1 shows the scatter
plots of data points and the results of the true and fitted regression functions for 4 sub-
jects randomly selected. The data points are denoted by “-”. The results of the true
and fitted regression functions are denoted by the solid and dotted lines, respectively. In
Figure 5.1 we can see that the proposed model works well for this simulated data since
the results of both regression functions are close. Figure 5.2 shows the histogram of the
random effect b;. The left plot is the histogram for the true b; and the right plot is the
histogram for the estimated b;. However, these histograms for such small data set do not
show quite well that b;’s are normally distributed.

5.2. Treatment of epileptic seizure

Patients suffering from simple or complex partial seizures were randomized to re-
ceive either the antiepileptic drug progabide or a placebo, as an adjuvant to standard
chemotherapy. The patients were followed up for eight weeks in four biweekly clinic visits
and the biweekly seizure counts were collected. Also collected were the baseline seizure
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Figure 5.1: Results of regression functions for subjects in simulation study(Observation
(dot), true regression function(solid line) and fitted regression function(dotted line))
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Figure 5.2: Histograms of random effect parameter in simulation study{Left: Histogram
of the true b;, Right: Histogram of the estimated b;)

counts over the eight weeks prior to the trial and the age of the patients. A total of
590 patients were represented in the data, with 31 receiving progabide and 28 receiving
placebo. The data are listed in Thall and Vail (1990), where further details can be found.
Gu and Ma {2005) analyzed this data with nonparametric mixed-effect model based on
smoothing spline technique.

Let ;5 be the 4" seizure intensity of the i** subject corresponding to covariate vector
x;;, where x;; = (T1i5, Taij, T3i5 z4i;)7 consists of the treatment(2 levels), the time of
clinic visit(4 points), the baseline seizure count and the age of patient, in order. We shall
fit an Poisson model of the form

My = log pij = bo + Przry; + w’ P(@aij) + by, (5.2)
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Figure 5.3: Results for treatment of epileptic seizure

where 2;; = (225, 3i5, T4i;)7 andi=1,...,59, j=1,...,4.

The Gaussian kernel is utilized to estimate the nonparametric component of regression
function in this example. The penalty parameters A\; = 0.2, \» = 0.2 and the kernel
parameter 02 = 1.1 are obtained by GCV function (4.4). The intercept estimate is
50 = 1.6645 and the slope estimate is 31 = —(.38685, i.e., the treatment has the negative
effect on seizure. Figure 5.3 shows the seizure counts for 5 subjects randomly selected
and the histogram of bi. As seen from Figure 5.3, the proposed model provides a good
fitting performance for this longitudinal data set, which is based on the fact that the
proposed model includes not only the penalized term but also subject effects(random
effects} in likelihood function.

6. Conclusions

This paper proposes a kernel machine approach to the estimation of semiparametric
mixed-effect model in Poisson regression to analyze longitudinal count data. The main
advantage of the proposed approach is that its solution is easily obtained from a simple
IRWLS technique. This makes it easier to apply the proposal to the analysis of longitudi-
nal count data in practice. The proposal can be applied without heavy computations to
high-dimensional covariates settings since it takes after all advantages of kernel machine.
An important issue for kernel machine is model selection. Thus, we provide a GCV
method for choosing the hyperparameters which affect the performance of the proposed
approach.

The numerical studies indicate that the proposal produces good estimates for the
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parametric component of fixed-effect term and for the nonparametric one and that it
works well in general with finite sample. Therefore, we recognize that the proposed
method using the idea of kernel machine provides a satisfying solution to Poisson regres-
sion model for analysis of longitudinal count data.
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