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Noise Estimation based on Standard Deviation and Sigmoid Function

Using a Posteriori Signal to Noise Ratio in Nonstationary Noisy
Environments

Soo-Jeong Lee and Soon-Hyob Kim

Abstract: In this paper, we propose a new noise estimation and reduction algorithm for
stationary and nonstationary noisy environments. This approach uses an algorithm that classifies
the speech and noise signal contributions in time-frequency bins. It relies on the ratio of the
normalized standard deviation of the noisy power spectrum in time-frequency bins to its average.
If the ratio is greater than an adaptive estimator, speech is considered to be present. The propose
method uses an auto control parameter for an adaptive estimator to work well in highly
nonstationary noisy environments. The auto control parameter is controlled by a linear function
using a posteriori signal to noise ratio (SNR) according to the increase or the decrease of the
noise level. The estimated clean speech power spectrum is obtained by a modified gain function
and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the
advantages of much more simplicity and light computational load for estimating the stationary
and nonstationary noise environments. The proposed algorithm is superior to conventional
methods. To evaluate the algorithm's performance, we test it using the NOIZEUS database, and

use the segment signal-to-noise ratio (SNR) and ITU-T P.835 as evaluation criteria.

Keywords: Noise reduction, noise estimation, speech enhancement, sigmoid function.

1. INTRODUCTION

Noise estimation algorithm is an important factor of
many modern communications systems. Generally
implemented as a preprocessing component, noise
estimation and reduction improve the performance of
speech communication system for signals corrupted
by noise through improving the speech quality or
intelligibility. Since it is difficult to reduce noise
without distorting the speech, the performance of
noise estimation algorithm is usually a trade-off
between speech distortion and noise reduction [1].

Current single microphone speech enhancement
methods belong to two groups, namely, time domain
methods such as the subspace approach and frequency
domain methods such as the spectral subtraction (SS),
and minimum mean square error (MMSE) estimator
{2,3]. Both methods have their own advantages and
drawbacks. The subspace methods provide a mecha-
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nism to control the tradeoff between speech distortion
and residual noise, but with the cost of a heavy
computational load [4]. Frequency domain methods,

on the other hand, wusually consume less
computational resources, but do not have a
theoretically established mechanism to control

tradeoff between speech distortion and residual noise.
Among them, spectral subtraction (SS) is
computationally efficient and has a simple mechanism
to control tradeoff between speech distortion and
residual noise, but suffers from a notorious artifact
known as “musical noise” [5]. These spectral noise
reduction algorithms require an estimate of the noise
spectrum, which can be obtained from speech-absence
frames indicated by a voice activity detector (VAD) or,
alternatively, with the minimum statistic (MS)
methods [6], i.e., by tracking spectral minima in each
frequency band. In consequence, they are effective
only when the noise signals are stationary or at least
do not show rapidly varying statistical characteristics.
Many of the state-of-the-art noise estimation
algorithms use the minimum statistic methods [6-9].
These methods are designed for unknown
nonstationary noise signals. Martin proposed an
algorithm for noise estimation based on minimum
statistics [6]. The ability to track varying noise levels
is a prominent feature of the minimum statistics (MS)
algorithm [6]. The noise estimate is obtained as the
minima values of a smoothed power estimate of the
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noisy signal, multiplied by a factor that compensates
the bias. The main drawback of this method is that it
takes somewhat more than the duration of the
minimum-search windows to update the noise
spectrum when the noise level increases suddenly [7].
Cohen proposed a minima controlled recursive
algorithm (MCRA) [8] which updates the noise
estimate by tracking the noise-only regions of the
noisy speech spectrum. These regions are found by
comparing the ratio of the noisy speech to the local
minimum against a threshold. However, the noise
estimate delays by at most twice that window length
when the noise spectrum increases suddenly [7]. A
disadvantage to most of the noise-estimation schemes
mentioned is that residual noise is still present in
frames in which speech is absent. In addition, the
conventional noise estimation algorithms are
combined with a noise reduction algorithm such as the
SS and MMSE [2,3].

In this paper, we explain a method to enhance
speech by improving its overall quality while
minimizing residual noise. The proposed algorithm is
based on the ratio of the normalized standard
deviation (STD) of the noisy power spectrum in the
time-frequency bin to its average and a sigmoid
function (NTFAS). This technique, which we call the
“NTFAS noise reduction algorithm,” determines that
speech is present only if the ratio is greater than the
adaptive threshold estimated by the sigmoid function.
In the case of a region where a speech signal is strong,
the ratio of STD will be high. This is not high for a
region without a speech signal. Specifically, our
method uses an adaptive method for tracking the
threshold in a nonstationary noisy environment to
control the trade-off between speech distortion and
residual noise. The adaptive method uses an auto
control parameter to work well in highly
nonstationary noisy environments. The auto control
parameter is controlled by a linear function using «
posteriori signal to noise ratio (SNR) according to the
increase or the decrease of the noise level.

The clean speech power spectrum is estimated by
the modified gain function and the updated noisy
power spectrum of the time-frequency bin. We tested
the algorithm's performance with the NOISEUS [10]
database, using the segment signal-to-noise ratio
(SNR) and ITU-T P.835 [11] as evaluation criteria. We
also examined its adaptive tracking capability in
nonstationary environments. We show that the
performance of the proposed algorithm is superior to
that of the conventional methods. Moreover, this
algorithm produces a significant reduction in residual
noise .

The structure of the paper is as follows. Section 2
introduces the overall signal model. Section 3
describes the proposed noise reduction algorithm,
while Section 4 contains the experimental results and

discussion. The conclusion in Section 5 looks at future
research directions for the algorithm.

2. SYSTEM MODEL

Assuming that speech and noise are uncorrelated,
the noisy speech signal x(») can be represented as

x(n) = s(n) +d(n), (M

where s(n) is the clean speech signal and d(n) is

the noise signal. The signal is divided into the
overlapped frames by window and the short-time
Fourier transform (STFT) is applied to each frame.
The time-frequency representation for each frame is
as follows. X(k,!)=S(k,[)+ D(k,]), where (k=1,
2,...,L) are the frequency bin index and (/=1,2,
...,L) are the frame index. The power spectrum of the

noisy speech ]X (k,1 )|2 can be represented as
| XD SCD P +| Dl P, 2)
where |S(k,l)|2 is the power spectrum of the clean

. 2
speech signal and ‘D(k,l)‘ is the power spectrum of

the noise signal. .

The proposed algorithm is summarized in the block
diagram shown in Fig. 1. It is consists of seven main
components: window and fast Fourier transform
(FFT), standard deviation of the noisy power spectrum
and estimation of noise power, calculation of the ratio,
adaptive threshold wusing the sigmoid function,
classification of speech presence and absence in time-
frequency bins and updated gain function, updated
noisy power spectrum, and product of the modified
gain function and updated noisy power spectrum.
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Fig. 1. Flow diagram of proposed noise reduction
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3. PROPOSED NOISE ESTIMATION AND
REDUCTION ALGORITHM

The noise reduction algorithm is based on the STD
of the noisy power spectrum in a time and frequency-
dependent manner as follows:

_ 1 & 2 1 & 2
%)= Y X ®D, 50 =YXk, 3)
K5 =
& 2 _ o\
vt<l)—\/kkzﬂ(|)(<k,z) =10) 1 0
L 2
vy (k)= \/Ez(mk,l)z ~%(0) } )
=1
&f=liw), 6}:i§vf<k>, (6)
Ll=1 Kk=1
/ k
=20 =21 ®) ™)
O; O'f

where X,(/)is the average noisy power spectrum in

the frequency bin, X, (k) is the average noisy power

spectrum for the frame index, and 67 and o"'jzr are

the assumed estimate of noise power. (7) gives the
ratio of the (STD) for the noisy power spectrum in the
time-frequency bin to its average. In the case of a
region in which a speech signal is strong, the STD
ratio by (7) will be high. The ratio is generally not
high for a region without a speech signal. Therefore,
we can use the ratio in (7) to determine speech-
presence or speech-absence in the time-frequency bins
[12].

3.1. Classification of speech-presence and speech-
absence in frames using an adaptive sigmoid
function based on a posteriori SNR

Our method uses an adaptive algorithm with a

sigmoid function to track the threshold and control the

trade-off between speech distortion and residual noise:

1

l - b
v 1+exp(10-(7,(1) - 5,))

®)

where (/) is the adaptive threshold using the
sigmoid function. We defined a control parameter &, .
This threshold w, (/) is adaptive in the sense that it
changes depending on the control parameter 5, . The

control parameter o, is derived from the linear

function using the a posteriori signal to noise ratio
(SNR) in frame index.

8, =8, SNR() + 8,5, ©)

norm(‘X(k,l)

2’2)
2 b
2

2 s the average of the

(10)

SNR(l)=10-1og

norm(’ﬁ(k)

5
where |l§(k)l2 ~ 1/52|X(k,l)
I=1

|X (k,0) 2 initial 5 frames during the period of the first
silence and norm is the Euclidean length of a vector.
50]7 :5max —5s 'SNRmin’ (11)
§s — 5min — 5max , (12)
SNR ax — SNRin

where &, is the slope of the J;, J,4 is the offset

of the ¢,. The constants &, =0.1, &, =0.5,
SNRin =—5dB and SNR., =20dB are the
experimental values we used. Consequently, the a
posteriori SNR in (10) controls the &;. Fig. 2 shows
that the more the a posteriori SNR increases, the more
the J, decreases. Simulation results show that an
increase in the ¢, parameter is good for noisy signals
with a low SNR of less than 5 dB, and that a decrease
in &,1s good for noisy signals with a relatively high

SNR of greater than 15 dB. We can thus control the
trade-off between speech distortion and residual noise
in the frame index using &,. Fig. 3 shows that the

adaptive threshold using the sigmoid function allows
for a trade-off between speech distortion and residual

noise by controlling &, . If a speech signal is present,
the w,(/) calculated by (8) will be extremely small
(i.e., very close to 0). Otherwise, the value of (/)

calculated by (8) will be approximately 1. Fig.4isa

¢ 5 ptid 15 29 25 30 35
a pozteriori S8R

Fig. 2. The linear function using the a posteriori
SNR for the control parameter J, .
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Fig. 3. Adaptive thresholds using a sigmoid function
on the time-frequency bin index for 15dB car
noise, 5dB car noise, 10dB babble noise, 0dB
white noise, and 5dB SNR babble noise in a
nonstationary environments. Top panel: the
adaptive thresholds of the time index (dotted
line). Bottom panel: the adaptive thresholds
of the frequency bin index (heavy line).

good illustration of Fig. 3.

3.2. Updated noisy power spectrum using classifica-

tion of speech-presence and absence in frames
The classification rule for determining whether speech
is present or absent in a frame is based on the
following algorithm:

If v, (l)> &
Dl (kD) =| X (k, D

/ K
) 1 1 A
Dmean(k) = 72 (EZDlzevel(k:l)
m=1 k=1

Gupdate (k,))=G(k,1) o
else

Dlzevel(k>l) = DA2 n(k)

mea

Gupdate (k,1) = G(k, 1) - (1- @),

where decision parameter ¢, and parameter o are
initially 0.99 and the gain function G(k,/) is 1.0.
The threshold ,(/) is compared to the decision
parameter ¢, . If it is greater than ¢, then speech is
determined to be absent in the [” frame; otherwise
speech is present. Then, the /” frames of the noisy
spectrum |X(k,l)|2 are set to lA),ivel(k,l). We
estimate ﬁlzevel(k,l) frames of the noise power
spectrum, and DA,iean (k) is calculated by averaging

over the frames without speech. The D? (k) is the

mean

it poowey B}

aF
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Time {8
Fig. 4. Example of noise reduction by three

enhancement algorithms with 5dB car noise
for the spl2.wav female speech sample of
“The drip of the rain made a pleasant sound”
from the NOIZEUS database. Top panel:
output power for car noise 5dB using the
SSMUL method (solid line), the MSSS
method (dotted line), and NTFAS method
(heavy line). Bottom panel enhanced
Speech signal using NTFAS.

assumed estimate of the residual noise of the frames
in the presence of speech. We refer to this value as the
“sticky noise” of the speech-presence index. Then we
represent G, (k.[), the updated gain function in

a frame index using the gain function G(k,!) and the
parameter o for the frames in which speech is absent.
If the /" frame is considered to be frame in which
speech is present, then D? (k)is set to ﬁ,zeve, (k,0)

mean

and DA,znean (k) is used to reduce the sticky noise of

the frames of in the presence of speech. We can see
the sticky noise in the the square region and residual
noise in the random peak region in Fig. 5.

As a noted above, G,,q,, (k. is the updated gain

Sruequssy bio

Fig. 5. Estimated noise power spectrum at car noise
10dB spl2.wav of female “The drip of the
rain made a pleasant sound” from the
NOIZEUS database.
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function in a frame index using the gain function
G(k,l) and the parameter (1—a) for the frames in

which speech is present. Figs. 6 and 7 show the gain
function G(k,/) and the updated gain function

G,pdate (k> 1) , Tespectively:

‘Xupdate(kﬂl))z :|X(k’l)|2 _DAlzevel(kal)a (13)

2 2
| Xpaare (o) = MAX (X e D] ser). (14)

The updated noisy power spectrum of the frame index

2
‘Xupdme(k,l)‘ is the difference between the noisy

power spectrum IX (k,l)|2 and the frames in which

speech is absent. [)lzevel (k,l), as shown in Fig. 8, Fig.

9 and Fig. 5, respectively: (13) reduces the noise of
the frames in which speech is absent, and (14) is used
to avoid negative values.

3.3. Classification of speech-presence and absence in
frequency bins using an adaptive sigmoid
function based on a posteriori SNR

In a manner parallel to that described bins in the

previous subsection, our method uses an adaptive

algorithm with a sigmoid function to track the
threshold in a frequency bins:

1
L+exp(10-(7,(0)-5,)) |

v (k)= (15)
where (k) is the adaptive threshold using the

sigmoid function in the frequency bins. We define a
control parameter &,. The threshold y (k) is

adaptive in the sense that it changes depending on the
control parameter &,. The control parameter of the

frequency bin &, is derived from the linear function

using the a posteriori signal to noise ratio (SNR) in
frequency bins.

8 =04 SNR(K)+ 55, (16)

(|X(k,l)|2)

SNR(k) =10-log| ~——<|,
(}Dlevel(k)l )

(7

A 2
where ‘D,eve, (k)‘ is the estimate of the noise power

spectrum in frequency bins.

5fo:5fmax_5fs'SNRmin7 (18)

Fig. 6. Gain function.

5f min 5f max
5 f:g = D
SNR,.. — SNRin

(19)

where &y is the slope of the &y, &, is the offset
of the 5,. The constants Oy, =0.1, gy =0.5,

SNRi, =—5dB and SNR,, =20dB are the
experimental values we used. Simulation results
indicate that the control parameter &, will be optimal

over a wide range of SNRs. Fig. 3 shows that the
adaptive threshold y , accounts for the frequency bin

index by controlling &,. Consequently, we can cont-

rol the trade-off between speech distortion and resid-
ual noise in the frequency bins using &, in Fig. 10.

3.4. Noise reduction using a modified gain functioand
updated noisy power

The classification algorithm for determining whether

speech is present or absent in a frequency bin is

v k>4,
Grnodi (k:0) = Gypare (K1) -
else
Grnodi (k:1) = Gypgare (k1) - (1 - ).
In the same manner as for the time index, where
decision parameter ¢, is initially 0.95, this threshold
y (k) is compared to the decision parameter g If
it is greater than ¢,, then speech is determined to be
absent in the frequency bin k" ; otherwise speech is

present. The G 4;(k,/) represents the modified gain

function for the time and frequency bins using the
gain function G, ;,,(k,!), the parameter «, and

P
(1-oa).
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Finally, the estimated clean speech power spectrum o 2
. 2 |
‘S(k,l) can be represented as a product of the .
modified gain function for the time-frequency bins e \

and the updated noisy power spectrum of the time-
frequency bins. The estimated clean speech signal can

then be transformed back to the time domain using the . | LS
inverse short-time Fourier transform (STFT) and V \‘x
synthesis with the overlap-add method. We can see the M 5 § i i P 2

& posteriori SME
Fig. 10. The linear function using the a posteriori

SNR for the contor] parameter o .

Eraqueny i

Frame ks

Fig. 7. Updated gain function.

Fig. 8 . Updated noisy power spectrum with 10dB car
noise for the female sp12.wav speech sample
“The drip of the rain made a pleasant
sound”from the NOIZEUS database.

Frequasty bin frame ndes

Fig. 12.Estimated clean speech power spectrum with
10dB car noise for the female spl2.wav
speech sample “The drip of the rain made a
pleasant sound” from the NOIZEUS
database.

modified gain function and the estimated clean speech
power spectrum in Figs. 11 and 12, respectively.

4. EXPERIMENTAL RESULTS AND

DISCUSSION
Fig. 9. Noisy power spectrum with 10dB car noise For our evaluation, we selected three male and
for the female sp12.wav speech sample “The three female noisy speech samples from the

drip of the rain made a pleasant sound” from NOIZEUS database [10]. The signal was sampled at 8
the NOIZEUS database. kHz and transformed by the STFT using 50%
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overlapping Hamming windows of 256 samples.
Evaluating of the new algorithm and a comparing it to
the multi band spectral subtraction (MULSS) and MS
with spectral subtraction (MSSS) methods [6,13]
consisted of two parts. First, we tested the segment
SNR. This provides a much better quality measure
than the classical SNR since it indicates an average
error over time and frequency for the enhanced speech
signal. Thus, a higher segment SNR value indicates
better intelligibility. Second, we used ITU-T P.835 as
a subjective measure of quality [11]. This standard is
designed to include the effects of both the signal and

background distortion in ratings of overall quality [10].

4.1. Segment SNR and speech signal

We measured the segment SNR over short frames
and obtained the final result by averaging the value of
each frame over all the segments. Table 1 shows the
segment SNR improvement for each speech
enhancement algorithm. For the input SNR in the
range 5-15dB for white Gaussian noise, car noise, and
babble noise, we noted that the segment SNR after
processing was clearly better for the proposed
algorithm than for the MULSS and the MSSS
methods [6,13]. The proposed algorithm yields a
bigger improvement in the segment SNR with lower
residual noise than the conventional methods. The
NTFAS algorithm in particular produces good results
for white Gaussian noise in the range 5 to 15dB. Figs.
13 and 14 show the NTFAS algorithm’s clear
superiority in the 10dB car noise environment.

For nonstationary noisy environments, the conven-
tional methods worked well for high input SNR
values of 10 and 15dB; however, the output they
produced could not be easily understood for low SNR
values of car noise (5dB) and white noise (0dB), and
they produced residual noise and distortion as shown
in Fig. 15. This outcome is also confirmed by time-
frequency domain results of speech enhancement
methods illustrated in Figs. 15 and 16. A different
result is clear in Fig. 15(a) and (b) for the waveforms
of the clean and noisy speech signals, respectively, (c)

Table 1. Segmental SNR at white, car and babble
noise 5 through 15dB.

Noise (dB)| white babble car
MULSS 5 4.96 5.89 7.08
10 8.13 9.28 8.05
15 10.05 9.39 10.35
MSSS 5 6.83 5.41 6.71
10 11.20 9.65 10.96
15 15.23 14.11 14.92
NTFAS 5 9.98 6.44 7.58
10 11.93 10.68 11.87
15 16.53 14.49 15.70

(2]
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Fig. 13.Example of noise reduction with 10dB car
noise with female spl2.wav speech sample
“The drip of the rain made a pleasant sound”
from the NOIZEUS database for the three
enhancement algorithms. (a) original signal,
(b) noisy signal, (c) signal enhanced using the
MULSS method, (d) signal enhanced using
the MSSS method, and (e) signal enhanced
using the NTFAS method.

Fig. 14.Example of noise reduction with 10dB car
noise with female spl2.wav speech sample
“The drip of the rain made a pleasant sound”
from the NOIZEUS database for the three
enhancement algorithms. (a) original spectro-
gram, (b) noisy spectrogram, (c) spectrogram
using the MULSS method, (d) spectrogram
using the MSSSmethod, and (e) spectrogram
using the NTFAS method.

the waveforms of speech enhancement using the
MULSS method, (d) the MSSS method, and (¢) the
proposed NTFAS method. Fig. 15(c) and (d) show

that the presence of residual noise at 7>7.8s is due
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Fig. 15. Time domain results of speech enhancement
for 15dB car noise, 5dB car noise, 10dB
babble noise, 0dB white noise, and 5dB SNR
babble noise in a nonstationary environment.
The noisy signal comprises five concatenated
sentences from the NOIZEUS database. The
speech signal were two male and one female
sentences from the AURORA 2 corpus. (a)
original speech, (b) noisy speech, (c) speech
enhanced using MULSS method,; (d) speech
enhanced using the MSSS method, (e) speech
enhanced using the NTFAS method.

partly to the inability of the speech enhancement
algorithm to track the sudden appearance of a low
SNR. In contrast, panel (e¢) shows that the residual
noise is clearly reduced with the proposed NTFAS
algorithm.

4.2. The ITU-T P.835 standard

Noise reduction algorithms typically degrade the
speech component in the signal while suppressing the
background noise, particularly under low-SNR
conditions. This situation complicates the subjective
evaluation of algorithms as it is not clear whether

Table 2. The overall effect (OVL) using the Mean

Feeq. (He}

Freg {Hz

Tievier 5

Freq. (21

Tiena 5

Tiene ¢s)

Fig. 16.Frequency domain results of speech
enhancement for 15dB car noise, 5dB car
noise, 10dB babble noise, 0dB white noise,
and 5dB SNR babble noise in a nonstationary
environment. The noisy signal comprises five
concatenated sentences from the NOIZEUS
database. The speech signal were two male
and one female sentences from the AURORA
2 corpus. (a) original spectrogram, (b) noisy
spectrogram, (c) spectrogram using the
MULSS method, (d) spectrogram using the
MSSS method, (e) spectrogram using the
NTFAS method.

listeners base their overall quality judgments on the
distortion of the speech or the presence of noise. The

overall effect of speech and noise together was rated
using the scale of the Mean Opinion Score (MOS),
scale of background intrusiveness (BAK), and the SIG

Table 3. Scale of Background Intrusiveness (BAK),
5= not noticeable, 4= somewhat noticeable,
3= noticeable but notintrusive, 2= fairly
conspicuous, somewhat intrusive, 1= very

Opinion Score (MOS), 5= excellent, 4= intrusive.
good, 3= fair, 2= poor, 1= bad. Noise (dB)| white babble car
Noise (dB)| white babble car MULSS 5 3.58 221 2.83
MULSS 5 1.84 2.47 2.78 10 3.31 2.37 3.01
10 3.14 2.96 3.05 15 5.00 3.01 1.79
15 3.57 3.49 3.90 MSSS 5 338 1.63 2.18
MSSS 5 2.98 2.66 2.74 10 RT) 246 269
10 441 3.19 3.04
15 .43 5.00 330 15 3.54 3.00 2.60
NTFAS 5 3.55 2.55 231 NTFAS 5 3.25 2.54 2.17
10 4,62 2.67 2.87 10 3.63 2.85 3.09
15 4.73 4.56 4.40 15 4.58 5.00 5.00
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Table 4. Scale of Signal Distortion (SIG), 5=no
degradation, 4= little degradation, 3=
somewhat degraded, 2= fairly degraded, 1=

very degraded.
Noise (dB)| white babble car
MULSS 5 1.79 2.81 2.87
10 2.69 3.26 3.74
15 3.15 3.37 3.75
MSSS 5 1.93 3.25 3.92
10 2.96 3.63 3.92
15 4.53 3.87 4.01
NTFAS 5 2.69 3.28 3.60
10 4.06 3.30 3.63
15 4.72 3.73 3.80

{10]. The proposed method resulted in a great
reduction in noise, while providing enhanced speech
with lower residual noise and somewhat higher MOS,
BAK, and SIG scores than the conventional methods.
It also degraded the input speech signal in highly
nonstationary noisy environments. This is confirmed
by an enhancement signal and ITU-T P.835 test [11].
The results of the evaluation are shown in Tables 2, 3,
and 4. The best result for each speech enhancement
algorithms is shown in bolds.

5. CONCLUSIONS

In this paper, we proposed a new approach to the
enhancement of speech signals that have been
corrupted by stationary and nonstationary noise. This
approach is not a conventional spectral algorithm, but
uses a method that separates the speech-presence and
speech-absence contributions in time-frequency bins.
We call this technique the NTFAS speech
enhancement algorithm. The propose method used an
auto control parameter for an adaptive threshold to

- work well in highly nonstationary noisy environments.

The auto control parameter was affected by a linear
function by application a posteriori signal to noise
ratio (SNR) according to the increase or the decrease
of the noise level. The proposed method resulted in a
great reduction in noise while providing enhanced
speech with lower residual noise and somewhat MOS,
BAK and SIG scores than the conventional methods.
In the future, we plan to evaluate its possible
application in preprocessing for new communication
systems, human-robotics interactions, and hearing aid
systems.

REFERENCES
[1] M. Bhatnagar, 4 Modified Spectral Subtraction
Method Combined with Perceptual Weighting for

(2]

[3]

[4]

[5]

[6]

[7]

(8] .

[9]

[10]

[11]

[12]

[13]

Soo-Jeong Lee and Soon-Hyob Kim

Speech Enhancement, Master’s Thesis, Univer-
sity of Texas at Dallas, 2003.

S. F. Boll, “Suppression of acoustic noise in
speech using spectral subtraction,” IEEE Trans.
on Acoustics, Speech, and Signal Processing, vol.
27, no. 2, pp. 113-120, 1979.

Y. Ephraim and D. Malah, “Speech enhancement
using a minimum mean-square error short-time
spectral amplitude estimator,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol.
32, no. 6, pp. 1109-1121, 1984.

Y. Hu, Subspace and Multitaper Methods for
Speech  Enhancement, Ph.D. Dissertation.
University of Texas at Dallas, 2003.

O. Cappe, “Elimination of the musical noise
phenomenon with the Ephraim and Malah noise
suppressor,” IEEE Trans. on Speech Audio
Processing, vol. 2, no. 2, pp. 346-349, 1994.

R. Martin, “Noise power spectral density
estimation based on optimal smoothing and
minimum statistics,” IEEE Trans. on Speech
Audio Processing, vol. 9, no. 5, pp. 504-512,
2001.

R. Sundarrajan and C. L. Philipos, “A noise-
estimation algorithm for highly non-stationary
environments,” Speech Communication, vol. 48,
pp. 220-231, 2006.

I. Cohen, “Noise spectrum in adverse
environments: Improved minima controlled
recursive averaging,” IEEE Trans. on Speech
Audio Processing, vol. 11, no. 5, pp 466-475,
2003.

I. Cohen, “Speech enhancement using a
noncausal a priori SNR estimator,” IEEFE Signal
Processing Letters, vol. 11, no. 9, pp. 725-728,
2004.

C. L. Philipos, Speech Enhancement (Theory
and Practice), 1st edition, CRC Press, Boca
Raton, FL, 2007. -

ITU-T, “Subjective test methodology for
evaluating speech communication systems that
include noise suppression algorithm,” ITU-T
Recommendation, p. 835, 2003.

S. J. Lee and S. H. Kim, “Speech enhancement
using gain function of noisy power estimates and
linear regression,” Proc. of IEEE/FBIT Int. Conf.
Frontiers in the Convergence of Bioscience and
Information Technologies, pp. 613-616, October
2007.

S. Kamath and P. Loizou, “A multi-band spectral
subtraction method for enhancing speech
corrupted by colored noise,” Proc. of Internatio-
nal Conference on Acoustics, Speech and Signal
Processing, pp. 4164-4167, 2002.



Noise Estimation based on Standard Deviation and Sigmoid Function Using a Pasteriori Signal to Noise ...

Soo-Jeong Lee received the B.S.
degree in Computer Science from
Korea National Open University in
1997, and the M.S. and Ph.D. degrees
in  Computer Engineering  from
Kwangwoon University, Seoul, Korea,
in 2000 and 2008, respectively. He is
currently a Post-Doc. Fellow, Sung-
kyunkwan University (BK 21 Prog-
ram). His research interests include speech enhancement,
adaptive signal processing, and noise reduction.

e

Soon-Hyob Kim received the B.S.
degree in Electronics Engineering
from Ulsan Unversity, Korea in 1974,
and the M.S. and Ph.D. degrees in
Electronics Engineering from Yonsei
University, Korea, in 1976 and 1983,
respectively. He is currently a Profes-
sor, Dept. of Computer Engineering,
Kwangwoon University. His area of
interest are speech recognition, signal processing, and
human-computer interaction.

827



