DOI QR코드

DOI QR Code

Characterization of Pore Structures for Porous Sintered Reaction-Bonded Silicon Nitrides with Varied Pore-Former Content

  • Park, Young-Jo (Engineering Ceramics research Group, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Engineering Ceramics research Group, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Engineering Ceramics research Group, Korea Institute of Materials Science)
  • Published : 2008.11.30

Abstract

The effect of pore former content on both porosity and pore structure was investigated for porous sintered reaction-bonded silicon nitrides (SRBSNs). A spherical PMMA with $d_{50}=8{\mu}m$ was employed as a pore-former. Its amount ranged from 0 to 30 part. Porous SRBSNs were fabricated by post-sintering at various temperatures where the porosity was controlled at $12{\sim}52%$. The strong tendency of increasing porosity with PMMA content and decreasing porosity with sintering temperature was observed. Measured pore-channel diameter increased $(0.3{\rightarrow}1.1{\mu}m)$ with both PMMA content and sintering temperature.

Keywords

References

  1. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of $\beta$-Si3N4: I, Effects of Various Microstructural Factors," J. Am. Ceram. Soc., 82 [11] 3105- 12 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02209.x
  2. M. Kitayama, K. Hirao, A. Tsuga, K. Watari, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of ${\beta}-Si_3N_4$ : II, Effect of Lattice Oxygen," J. Am. Ceram. Soc., 83 [8] 1985- 92 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01501.x
  3. M. Kitayama, K. Hirao, K. Watari, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of ${\beta}-Si_3N_4$ : III, Effect of Rare Earth (RE=La, Nd, Gd, Y, Yb and Sc) Oxide Additive," J. Am. Ceram. Soc., 84 [2] 353-58 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00662.x
  4. K. Watari, K. Hirao, M. E. Brito, M. Toriyama, and S. Kanzaki, "Hot Isostatic Pressing to Increase Thermal Conductivity of $Si_3N_4$ Ceramics," J. Mater. Res., 14 [4] 1538-41 (1999) https://doi.org/10.1557/JMR.1999.0206
  5. H. Yokota and M. Ibukiyama, "Microstructure Tailoring for High Thermal Conductivity of ${\beta}-Si_3N_4$ Ceramics," J. Am. Ceram. Soc., 86 [1] 197-99 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03305.x
  6. N. Hirosaki, Y. Okamoto, F. Munakata, and Y. Akimune, "Effect of Seeding on the Thermal Conductivity of Self-reinforced Silicon Nitride," J. Euro. Ceram. Soc., 19 2183-87 (1999) https://doi.org/10.1016/S0955-2219(99)00030-8
  7. C. Kawai and A. Yamakawa, "Effect of Porosity and Microstructure on the Strength of $Si_3N_4$ :Designed Microstructure for High Strength, High Thermal Shock Resistance, and Facile Machining," J. Am. Ceram. Soc., 80 [10] 2705-08 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03179.x
  8. J. F. Yang, Z. Y. Deng, and T. Ohji, "Fabrication and Characterization of Porous Silicon Nitride Ceramics Using $Yb_2O_3$ as Sintering Additive," J. Euro. Ceram. Soc., 23 371- 78 (2003) https://doi.org/10.1016/S0955-2219(02)00175-9
  9. N. Miyakawa, H. Sato, H. Maeno, and H. Takahashi, "Characteristics of Reaction-bonded Porous Silicon Nitride Honeycomb for DPF Substrate," JSAE Review, 24 269-76 (2003) https://doi.org/10.1016/S0389-4304(03)00050-X
  10. C. Kawai and A. Yamakawa, "Network Formation of $Si_3N_4$ Whiskers for the Preparation of Membrane Filters," J. Mater. Sci. Lett., 17 873-75 (1998) https://doi.org/10.1023/A:1006619413144
  11. C. Kawai and A. Yamakawa, "Crystal Growth of Silicon Nitride Whiskers through a VLS Mechanism Using $SiO_2-Al_2O_3-Y_2O_3$ Oxides as Liquid Phase," Ceram. Int., 24 135-38 (1998) https://doi.org/10.1016/S0272-8842(97)00042-4
  12. C. Kawai, T. Marsuura, and A. Yamakawa, "Separation- Permeation Performance of Porous $Si_3N_4$ Ceramics Composed of ${\beta}-Si_3N_4$ Grains as Membrane Filters for Microfilteration," J. Mater. Sci., 34 893-96 (1999) https://doi.org/10.1023/A:1004532200735
  13. J. F. Yang, G. J. Zhang, and T. Ohji, "Fabrication of Lowshrinkage, Porous Silicon Nitride Ceramics by Addition of a Small Amount of Carbon," J. Am. Ceram. Soc., 84 [7] 1639-41 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00890.x
  14. D. Chen, B. Zhang, H. Zhuang, and W. Li, "Combustion Synthesis of Network Silicon Nitride Porous Ceramics," Ceram. Int., 29 363-64 (2003) https://doi.org/10.1016/S0272-8842(02)00145-1
  15. M. Kramer, M. J. Hoffmann, and G. Petzow, "Grain Growth Kinetics of Si3N4 during $\alpha$/$\beta$-transformation," Acta Metall. Mater., 41 [10] 2939-47 (1993) https://doi.org/10.1016/0956-7151(93)90108-5
  16. A. J. Pyzik and D. R. Beaman, "Microstructure and Properties of Self-reinforced Silicon Nitride," J. Am. Ceram. Soc., 76 [11] 2737-44 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb04010.x
  17. C. Kawai, "Effect of Grain Size Distribution on the Strength of Porous $Si_3N_4$ Ceramics Composed of Elongated ${\beta}-Si_3N_4$ Grains," J. Mater. Sci., 36 5713-17 (2001) https://doi.org/10.1023/A:1012542421983
  18. Y. Inagaki, N. Kondo, and T. Ohji, "High Performance Porous Silicon Nitrides," J. Euro. Ceram. Soc., 22 2489-94 (2002) https://doi.org/10.1016/S0955-2219(02)00107-3
  19. N. Kondo, Y. Inagaki, Y. Suzuki, and T. Ohji, "Fabrication of Porous Anisotropic Silicon Nitride by Using Partial Sinter- forging Technique," Mater. Sci. Eng., A335 26-31 (2002)
  20. A. J. Moulson, "Reaction-bonded Silicon Nitride: its Formation and Properties," J. Mater. Sci., 14 1017-51 (1979) https://doi.org/10.1007/BF00561287
  21. H. M. Jennings, "On Reactions between Silicon and Nitrogen," J. Mater. Sci., 18 951-67 (1983) https://doi.org/10.1007/BF00551961
  22. G. Ziegler, J. Heinrich, and G. Wotting, "Relationships between Processing, Microstructure and Properties of Dense and Reaction-bonded Silicon Nitride," J. Mater. Sci., 22 3041-86 (1987) https://doi.org/10.1007/BF01161167
  23. A. Giachello and P. Popper, "Post-sintering of Reactionbonded Silicon Nitride," Ceram. Inter., 5 [3] 110-14 (1979) https://doi.org/10.1016/0390-5519(79)90015-2
  24. J. A. Mangles and G. J. Tennenhouse, "Densification of Reaction-bonded Silicon Nitride," J. Am. Ceram. Soc. Bull., 59 1216-19 (1980)
  25. H. J. Kleebe and G. Ziegler, "Influence of Crystalline Second Phases on the Densification Behavior of Reactionbonded Silicon Nitride during Post Sintering under Increased Nitrogen Pressure," J. Am. Ceram. Soc., 72 [12] 2314-17 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06082.x
  26. B. T. Lee, J. H. Yoo, and H. D. Kim, "Size Effect of Raw Si Powder on Microstructures and Mechanical Properties of RBSN and GPSed-RBSN Bodies," Mater. Sci. Eng., A333 306-13 (2002)
  27. X. Zhu, Y. Zhou, and K. Hirao, "Post-densification Behavior of Reaction-bonded Silicon Nitride (RBSN): Effect of Various Characteristics of RBSN," J. Mater. Sci., 39 5785- 97 (2004) https://doi.org/10.1023/B:JMSC.0000040090.33370.66
  28. H. Suda, H. Yamauchi, Y. Uchimaru, I. Fujiwara, and K. Haraya, "Preparation and Gas Permeation Properties of Silicon Carbide-based Inorganic Membranes for Hydrogen Separation," Desalination, 193 252-55 (2006) https://doi.org/10.1016/j.desal.2005.04.143
  29. Y. Iwamoto, K. Sato, T. Kato, T. Inada, and Y. Kubo, "A Hydrogen-permselective Amorphous Silica Membrane Derived from Polysilazane," J. Euro. Ceram. Soc., 25 257- 64 (2005) https://doi.org/10.1016/j.jeurceramsoc.2004.08.007
  30. Z. Li, K. Kusakabe, and S. Morooka, "Preparation of Thermostable Amorphous Si-C-O Membrane and its Application to Gas Separation at Elevated Temperature," J. Membr. Sci., 118 159-68 (1996) https://doi.org/10.1016/0376-7388(96)00086-5
  31. Y. J. Park, E. Choi, H. W. Lim, and H. D. Kim, "Design of Porosity Level for Porous $Si_3N_4$ Ceramics Manufactured by Nitriding and Post-sintering of Si Powder Compact," Mater. Sci. Forum, 534-536, 1017-20 (2007)

Cited by

  1. Production of Permeable Fibrous Materials Composed of Silicon Nitride vol.56, pp.3, 2015, https://doi.org/10.1007/s11148-015-9824-2
  2. Consolidation of Slip Thin-Walled Elements Based on Thixotropic Dispersed Systems for Preparing Highly Porous RSSN vol.56, pp.4, 2015, https://doi.org/10.1007/s11148-015-9857-6
  3. Making Hollow Cylindrical Products of High-Porosity Silicon Nitride by the Centrifugal Forming of Granules of a Thixotropic Thermoplastic Slip vol.56, pp.5, 2016, https://doi.org/10.1007/s11148-016-9883-z