DOI QR코드

DOI QR Code

Effects of Sr on the Electrical Properties of PZT Ceramics Prepared by Self-propagating High-temperature Synthesis

자전연소반응법에 의해 제조된 PZT의 전기적 특성에 미치는 Sr의 영향

  • Yang, Beom-Seok (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Shin, Chang-Yun (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Won, Chang-Whan (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University)
  • 양범석 (충남대학교 급속응고신소재연구소) ;
  • 신창윤 (충남대학교 급속응고신소재연구소) ;
  • 원창환 (충남대학교 급속응고신소재연구소)
  • Published : 2008.11.30

Abstract

PSZT are selected and SHS are applied to each system. The sintering properties of PSZT powders showed $7.754g/cm^3$ of sintered density and $4{\mu}m$ of grain size at sintering temperature of $1250^{\circ}C$. Curie temperature lowered gradually from $363.6^{\circ}C\;to\;319.2^{\circ}C$ and relative dielectric constants increased rapidly by a quantity of Sr. This remarkable contrast in dielectric properties with powder preparation methods, in this study, was not due to grain size and sintered density but rather a crystallinity and sinterability of synthesized powders, extra-supplied Pb during reaction, mol fraction of rhombohedral phase and purity of starting materials.

Keywords

References

  1. W. G. Cady, "Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals," p. 806, McGraw-Hill Book Company, Inc., New York, 1946
  2. B. Jaffe, R. S. Roth, and S. Marzullo, "Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics," J. Appl. Phys., 25 [6] 809-10 (1954) https://doi.org/10.1063/1.1721741
  3. B. Jaffe, W. R. Cook, and H. Jaffe, "Piezoelectric Ceramics," p. 317, Academic Press, London, 1971
  4. K. Okazaki, "Developments in Fabrication of Piezoelectric Ceramics," Ferroelectrics, 41 [1] 77-96 (1982) https://doi.org/10.1080/00150198208210611
  5. T. Tanaka, "Piezoelectric Devices in Japan," Ferroelectrics, 40 [1] 167-87 (1982) https://doi.org/10.1080/00150198208218168
  6. K. Uchino, "Recent Topics of Ceramic Actuators - How to develop New Ceramic Devices," Ferroelectrics, 91 281-92 (1989) https://doi.org/10.1080/00150198908015745
  7. K. M. Rittenmyer, "Electrostrictive Ceramics for Underwater Transducer Applications," J. Acous. Soc. Am., 95 [2] 849-56 (1994) https://doi.org/10.1121/1.408395
  8. P. Duran and C. Moure, "Piezoelectric Ceramics," Meterials Chemistry on Physics, 15 [3-4] 193-211 (1986) https://doi.org/10.1016/0254-0584(86)90001-5
  9. R. E. Newnham, "The Golden Age of Electroceramics," Adv. Ceram. Mat., 3 [1] 12-6 (1988) https://doi.org/10.1111/j.1551-2916.1988.tb00162.x
  10. N. Okada, K. Ishikawa, T. Nomura, K. Murakami, S. Fukuoka, N. Nishino, and U. Kihara, "Low-Hysteresis Actuator of Alkoxide-Prepared $Pb_{0.96}Sr_{0.04}(Zr_{0.51}Ti_{0.49})O_3$," Jpn. J. Appl. Phys. I, 30 [9B] 2267-70 (1991) https://doi.org/10.1143/JJAP.30.2267
  11. N. Y. Kudo and T. Ono, "Temperature-Dependence of a Bimorph-Type Actuator Using Lead Zinc Niobate-Based Ceramics," Jpn. J. Appl. Phys. I, 31 [9B] 3081-84 (1992) https://doi.org/10.1143/JJAP.31.3081
  12. G. A. Smolenskii and A. I. Agranovskayas, "Dielectric Polarization of a Number of Complex Compounds," Sov. Phys. Solid State, 1 1473-92 (1960)
  13. T. Ikeda, "Fundamentals of Piezoelectricity," pp. 1-4, Oxford University Press, Oxford, 1990
  14. G. H. Haertling, "Ceramic Materials for Electronic," pp. 129-55, ed. Relva C. Buchanon, 2, Marcel Dekker Inc., New York, 1991
  15. Keith G. Brooks, Ian M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, "Orientation of Rapid Thermally Annealed Lead Zirconate Titanate thin Films on (111) Pt Substrates," J. Mater. Res., 9 [10] 2540 (1994) https://doi.org/10.1557/JMR.1994.2540
  16. K. Okuwada, M. Imai, and K. Kakuno, "Preparation of $Pb(Mg_{0.33}Nb_{2/3})O_3$ Thin Film by Sol-Gel Method," Jpn. J. Appl. Phys., 28 L1271-3 (1989) https://doi.org/10.1143/JJAP.28.L1271
  17. S. Hirano, T. Yugo, K. kikuta, Y. Araki, M. Saitoh, and S. Ogasahara, "Synthesis of Highly Oriented Lead Zirconate- Lead Titanate Film Using Metallo-organics," J. Am. Ceram. Soc., 75 [10] 2785-89 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb05505.x
  18. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, "Dielectric and Pyroelectric Properties in The $Pb(Mg_{0.33}Nb_{2/3})O_3-PbTiO_3$ System," Ferroelectrics, 100 [1] 29-38 (1989) https://doi.org/10.1080/00150198908007897
  19. J. S. Zhu , X. M. Lu, P. Li, W. Jiang, and Y. N. Wang, "Stress Effects in Ferroelectric Thin Films," Solid State Communications, 101 [4] 263-66 (1997) https://doi.org/10.1016/S0038-1098(96)00545-5
  20. J. F. Crider, "Self-Propagation High Temperature Synthesis- A Soviet Method for Producing Ceramic Materials," Ceram. Eng. Sci. Proc., 3 [9-10] 519 (1982) https://doi.org/10.1002/9780470318782.ch8
  21. A. P. Hardt and P. V. Phung, " Propagation of Gasless Reactions in Solids-I. Analytical Study of Exothermic Intermetallic Reaction Rates," Combustion and Flame, 21 [1] 77-89 (1973) https://doi.org/10.1016/0010-2180(73)90009-6
  22. J. Kiser and R. M. Spriggs, "Soviet SHS Technology :A potential U.S. Advantage in Ceramics," Ceramic Bulletin, 68 61165-7 (1989)
  23. F. Kulscar, "Electromechanical Properties of Lead Titanate Zirconate Ceramics Modified with Certain Three-or Five- Valent Additions," J. Am. Ceram. Soc., 42 [7] 343-49 (1959) https://doi.org/10.1111/j.1151-2916.1959.tb14321.x
  24. H. Banno and T. Tsunooka, "Piezoelectric Properties and Temperature Dependences of Resonant Frequency of $WO_3- MnO_2$-Modified Ceramics of $Pb(Zr-Ti)O_3$," Japan J. Appl. Phys., 6 954-62 (1967) https://doi.org/10.1143/JJAP.6.954
  25. G. H. Haertling, "Grain Growth and Densification of Hot- Pressed Lead Zirconate-Lead Titanate Ceramics Containing Bismuth," Am. Ceram. Soc., 49 [3] 113-18 (1966) https://doi.org/10.1111/j.1151-2916.1966.tb15386.x
  26. K. Okazaki, and K. Nagata, "Effects of Grain Size and Porosity on Electrical and Optical Properties of PLZT Ceramics," J. Am. Ceram. Soc., 56 [2] 82-6 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12363.x
  27. H. T. Martirena and J. C. Burfoot, "Grain-size Effects on Properties of Some Ferroelectric Ceramics," J. Phys. C: Solid State Physics, 7 [17] 3182-92 (1974) https://doi.org/10.1088/0022-3719/7/17/024
  28. J.-S. Lee, E.-C.Park, J.-H. Park, B.-I. Lee, and S.-K. Joo, "Effects of Grain Boundaries on the Ferroelectric Properties of the PZT Thin Films," J. Kor. Ceram. Soc., 36 [12] 1316- 21, (1999)
  29. H. Huang, C. Q. Sun, Z. Tianshu, and P. Hing, "Grain-size Effect on Ferroelectric $Pb(Zr_{1-x}Ti_x)O_3$ Solid Solutions Induced by Surface Bond Contraction," J. Am. Phys. Soc., Physical Review B, 63 184112-8 (2001) https://doi.org/10.1103/PhysRevB.63.184112
  30. T. T. Fang, H. L. Hsiehe, and F. S. Shiau, "Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High-Purity Barium Titanate," J. Am. Ceram. Soc., 76 [5] 1205-11 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03742.x