Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis

치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석

  • Park, Jong-Chan (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Shin, Sang-Wan (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Kwon, Kung-Rock (Department of Prosthodontics, Graduate School of Dentistry, KyungHee University)
  • 박종찬 (고려대학교 임상치의학대학원 고급보철학과) ;
  • 신상완 (고려대학교 임상치의학대학원 고급보철학과) ;
  • 권긍록 (경희대학교 치의학전문대학원 보철과)
  • Published : 2008.10.31

Abstract

Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.

목적: 상악 구치부에서 자연치와 임플란트 보철시, 보철치관/고정체 비율에 따른 응력분포 양상을 비교하고자 했다. 재료 및 방법: 자연치 모델의 경우는 획득한 3차원 인체모델을 상악 좌측 제2소구치 및 제 1대구치가 포함된 상악골을 Box 형태의 3차원 유한요소모델로 변환하였고, 임플란트 모델은 3차원 인체모델에서 치아 부분을 제거하고 동일 부위에 임플란트 모델을 연결하는 과정을 거쳐서 임플란트가 삽입된 유한요소모델을 구성하였다. 치관/고정체 비율을 0.7:1, 1:1, 1.25:1이 되도록 골수준 (bone level)을 조정하였으며 각 모델의 치관 부위에 300 N의 수직 하중과 수평하중을 각각 가했다. 결과: 1. 모든 하중 조건하에서 자연치와 임플란트 모두에서 피질골과 인접하는 경부에 응력이 집중되는 양상을 보였다. 2. 치관/치근 (고정체) 비가 증가함에 따라 자연치와 임플란트 모두에서 교합면에 수직적 하중을 가한 경우에는 응력의 변화가 뚜렷하지 않았으나, 수평적 하중을 가한 경우에서는 응력이 증가하는 양상을 보였다. 3. 자연치의 경우에 치관/치근비가 증가함에 따라 splinting이 응력감소 효과를 보였고, 임플란트의 경우에는, 치관/고정체 비가 증가함에 따라 splinting이 수직 하중조건에 응력감소효과를 보였으나, 중심에서 벗어난 하중조건에는 최대응력이 오히려 증가하는 양상을 보였다. 4. 임플란트의 경우, 치관/고정체 비가 증가함에 따라 splinting이 수평하중조건 4에서 뚜렷한 응력감소 효과를 보이나, 수평 하중조건 5에서는 응력감소 효과가 감소되고, 특히 치관/고정체 비가 1.25:1인 경우에서는 오히려 응력의 증가를 보였다. 결론: 임플란트 보철물은 치관/고정체 비가 커질수록 더 큰 응력을 받게 되고, splinting의 효과도 감소하게 된다. 또한 교합하중이 임플란트의 장축을 벗어나거나 중심에서 벗어난 경우 응력이 커지는 것으로 사료된다.

Keywords

References

  1. Branemark PI, Breine U, Lindstrom J, Adell R, Hansson BO, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100 https://doi.org/10.3109/02844316909036699
  2. Isidor F. Loss of osseointegration cause by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52 https://doi.org/10.1034/j.1600-0501.1996.070208.x
  3. Himmlova L, Dostalova T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: A finite element analysis. J Prosthet Dent 2004;91:20-5 https://doi.org/10.1016/j.prosdent.2003.08.008
  4. Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: A working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 1999;10:429-44 https://doi.org/10.1034/j.1600-0501.1999.100601.x
  5. Davarpanah M, Martinez H, Tecucianu JF. Apicalcoronal implant position: recent surgical proposals technical note. Int J Oral Maxillofac Implants 2000;15:865-72
  6. Yang HS, Lang LA, Felton DA. Finite element stress analysis on the effect of splinting in fixed partial dentures. J Prosthet Dent 1999;81:721-8 https://doi.org/10.1016/S0022-3913(99)70113-7
  7. Ishigaki S, Nakano T, Yamada S, Nakamura T, Takashima F. Biomechanical stress in bone surrounding an implant under simulated chewing. Clin Oral Implants Res 2003;14:97-102 https://doi.org/10.1034/j.1600-0501.2003.140113.x
  8. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent 2004;91:144-50 https://doi.org/10.1016/j.prosdent.2003.10.018
  9. Ismail YH, Pahountis LN, Fleming JF. Comparison of two-dimensional and three-dimensional finite element analysis of a blade implant. Int J Oral Implantol 1987;4:25-31
  10. Canay S, Hersek N, Akpinar I, A¸sik Z. Comparison of stress distribution around vertical and angled implants with finite-element analysis. Quintessence Int 1996;27:591-8
  11. Timoshenko S, Young DH, Elements of strength of materials. 5th ed. Florence: Wadsworth; 1968 p.377-90
  12. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prostheses type, and loading during function. J Prosthet Dent 1996;76:633-40 https://doi.org/10.1016/S0022-3913(96)90442-4
  13. Penny RE, Kraal JH. Crown-to-root ratio: Its significance in restorative dentistry. J Prosthet Dent 1979;42:34-8 https://doi.org/10.1016/0022-3913(79)90327-5
  14. Rosenstiel SF, land MF, Fujimoto J. Contemporary fixed prosthodontics. 1st ed. CV Mosby; 1988. p48-50
  15. Reynolds JM. Abutment selection for fixed prosthodontics. J Prosthet Dent 1968;19:483-8 https://doi.org/10.1016/0022-3913(68)90064-4
  16. Dykema RW. Fixed partial prosthodontics. J Tenn Dent Assoc 1962;43:309-30
  17. Chapman RJ. Principles of occlusion for implant prostheses: Guidelines for position, timing and force of occlusal contacts. Quintessence Int 1989;20:473-80
  18. Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res 1987;1:64-7 https://doi.org/10.1177/08959374870010011401
  19. Akpinar I, Anil N, Parnas L. A natural tooth's stress distribution in occlusion with a dental implant. J Oral Rehabil 2000;27:538-45
  20. Glickman I, Stein RS, Smulow JB. The effect of increased functional forces upon the periodontium of splinted and non-splinted teeth. J Periodontol 1961;32:290-9 https://doi.org/10.1902/jop.1961.32.4.290
  21. Glickman I, Roeber FW, Brion M, Pameijer JH. Photoelastic analysis of internal stresses in the periodontium created by occlusal forces. J Periodontol 1970;41:30-5 https://doi.org/10.1902/jop.1970.41.1.30
  22. Wang TM, Leu LJ, Wang J, Lin LD. Effect of prosthesis materials and prosthesis splinting on peri-implant bone stress around in poor quality bone: A numeric analysis. Int J Oral Maxillofac Implants 2002;17:231-7
  23. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: An animal experimental study. Clin Oral Implants Res 2001;12:207-18 https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  24. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants 1994;9:345-60
  25. Ichikawa T, Kanitani H, Wigianto R, Kawamato N, Matsumato N, Influence of bone quality on the stress distribution. An in vitro experiment. Clin Oral Implants Res 1997;8:8-22
  26. Meijer HJ, Starmans FJ, Steen WH, Bosman F. Loading conditions of endosseous implants in an edentulous human mandible: a three-dimensional, finite-element study. J Oral Rehabil 1996;23:757-63 https://doi.org/10.1046/j.1365-2842.1996.d01-185.x
  27. Barbier L, Vander SJ, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998;25:847-58 https://doi.org/10.1046/j.1365-2842.1998.00318.x
  28. Choi MH, Kang JS, Boo SB, Oh SH, An OJ, Kang DW. Finite element stress analysis according to the point and surface occlusal loads on the implant prosthesis. J Kor Acad Stomatognethic & Occlusion 2004; 20:83-94
  29. Weinberg LA. Reduction of implant loading with therapeutic biomechanics. Implant Dent 1998;7:277-85 https://doi.org/10.1097/00008505-199807040-00005
  30. Zhang JK, Chen ZQ. The study of effects of the elastic modulus of the materials substitute to human hard tissues on the mechanical state in the implant-bone interface by three-dimensional anisotropic finite element analysis. West China J Stomatol 1998;16:274-8