DOI QR코드

DOI QR Code

Measuring Convective Heat Transfer Coefficient Around a Heated Fine Wire in Cross Flow of Nanofluids

나노유체의 수직유동 속에 놓인 가는 열선주위의 대류열전달계수 측정

  • 이신표 (경기대학교 기계공학과)
  • Published : 2008.02.05

Abstract

Recent researches on nanofluids have mainly focused on the increase of thermal conductivity of nanofluids under static condition. The ultimate goal of using nanofluids, however, is to enhance the heat transfer performance under fluid flow. So it has been highly necessary to devise a simple and accurate measuring apparatus which effectively compares the heat transfer capability between the base and nanofluids. Though the convective heat transfer coefficient is not the complete index for the heat transfer capability, it might be one of useful indications of heat transfer enhancement. In this article, the working principles of experimental system for convective heat transfer coefficient around a heated fine wire in cross flow of nanofluids and its application example to three samples of nano lubrication oils are explained in detail.

Keywords

References

  1. Choi, U. S., 1995, 'Enhancing Thermal Conductivity of Fluids with Nanoparticles,' ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov., 12~17
  2. Lee, S., Choi, U. S., Li, S. and Eastman, J. A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' ASME Tran. J. Heat Transfer, Vol. 121, pp. 280~289 https://doi.org/10.1115/1.2825978
  3. Kim, S. H., Choi, S. Hong, J. and Kim, D. S., 2005, 'Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids,' Journal of KSME B, Vol. 29, No. 9, pp. 1065~1073 https://doi.org/10.3795/KSME-B.2005.29.9.1065
  4. Das, K. D., Putra, N., Thiesen, P. and Roetzel, W., 2003, 'Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,' ASME Tran. J. Heat Transfer, Vol. 125, pp. 567~574 https://doi.org/10.1115/1.1571080
  5. Lee, S., 2006, 'Measuring Thermal Conductivity of Nanofluids by Steady State Method,' Journal of KSME B, Vol. 30, No. 9, pp. 898~904 https://doi.org/10.3795/KSME-B.2006.30.9.898
  6. Lee, S., 2007, 'Natural Convection Heat Transfer from a Heated Fine Wire in Nanofluids,' Journal of KSME B, Vol. 31, No. 9, pp. 807~813 https://doi.org/10.3795/KSME-B.2007.31.9.807
  7. Hwang, K. S., Lee, J., Lee, B. H. and Jang, S. P., 2007, 'Fluid Flow and Convective Heat Transfer Characteristics of $Al_2O_3$ Nanofluids,' Journal of KSME B, Vol. 31, No. 1, pp. 16~20 https://doi.org/10.3795/KSME-B.2007.31.1.016
  8. Lee, J. and Jang, S. P., 2006, 'Fluid Flow Characteristics of $Al2_O_3$ Nanoparticles Suspended in Water,' Journal of KSME B, Vol. 30, No. 6, pp. 546~552 https://doi.org/10.3795/KSME-B.2006.30.6.546
  9. You, S. M., Kim, J. H. and Kim, K. H., 2003, 'Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer,' Applied Physics Letters, Vol. 83, pp. 3374~3376 https://doi.org/10.1063/1.1619206
  10. Jang, S. P. and Choi, U. S., 2004, 'Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Applied Physics Letters, Vol. 84, Issue 21, pp. 4316~4318 https://doi.org/10.1063/1.1756684
  11. Lee, D. and Kim, J., 2006, 'A New Mechanism for Enhanced Heat Transport of Nanofluid,' Journal of KSME B, Vol. 30, No. 6, pp. 560~567 https://doi.org/10.3795/KSME-B.2006.30.6.560
  12. Keblinski, P., Phillpot, S. R., Choi, S. U. and Eastman, J. A., 2002, 'Mechanisms of Heat Flow in Suspensions of Nano-sized Particles(Nanofluids),' International Journal of Heat and Mass Transfer, Vol. 45, pp. 855~863 https://doi.org/10.1016/S0017-9310(01)00175-2
  13. Lee, S., 2007, 'Validation Test for Transient Hot-wire Method to Evaluate the Temperature Dependence of Nanofluids,' Journal of KSME B, Vol. 31, No. 4, pp. 341~348 https://doi.org/10.3795/KSME-B.2007.31.4.341
  14. Holman, J. P., 1981, Heat Transfer, 5th Ed., McGraw Hill, pp. 289~290
  15. Incropera, F. P. and DeWitt, D. P., 2001, Introduction to heat transfer, 4th Ed., Wiley
  16. Carslaw, H. S. Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd Ed., Oxford University Press
  17. Johns, A. I., Scott, A. C., Watson, J. T. R. and Ferguson, D., 1988, 'Measurement of the Thermal Conductivity of Gases by the Transient Hot-wire Method,' Phil. Trans. R. Soc. Lond. Vol. A 325, pp. 295~356 https://doi.org/10.1098/rsta.1988.0054
  18. http://www.aoe.vt.edu/aoe4154/hotwirelab.pdf

Cited by

  1. Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire vol.37, pp.8, 2013, https://doi.org/10.3795/KSME-B.2013.37.8.725
  2. Measuring Apparatus for Convective Heat Transfer Coefficient of Nanofluids Using a Thermistor Temperature Sensor vol.40, pp.2, 2016, https://doi.org/10.3795/KSME-B.2016.40.2.103
  3. An Experimental Study of Transient Hot-wire Sensor Module for Measuring Thermal Diffusivity of Nanofluids vol.35, pp.2, 2011, https://doi.org/10.3795/KSME-B.2011.35.2.113
  4. Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature vol.36, pp.1, 2012, https://doi.org/10.3795/KSME-B.2012.36.1.009
  5. Apparatus for Comparing Thermal Conductivity of Nanofluids and Base Fluid Using Simultaneously Measured Resistance Variation Signals from Two Hot Wire Sensors vol.39, pp.1, 2015, https://doi.org/10.3795/KSME-B.2015.39.1.029