DOI QR코드

DOI QR Code

Effect of Thermal Aging on Intermetallic Compound Growth Kinetics of Au Stud Bump

Au stud 범프의 금속간화합물 성장거동에 미치는 시효처리의 영향

  • Lim, Gi-Tae (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Jang-Hee (School of Materials Science and Engineering, Andong National University) ;
  • Kim, Byoung-Joon (School of Materials Science and Engineering, Seoul National University) ;
  • Lee, Ki-Wook (R&D Center Amkor Technology Korea Inc.) ;
  • Lee, Min-Jae (R&D Center Amkor Technology Korea Inc.) ;
  • Joo, Young-Chang (School of Materials Science and Engineering, Seoul National University) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 임기태 (안동대학교 신소재공학부) ;
  • 이장희 (안동대학교 신소재공학부) ;
  • 김병준 (서울대학교 재료공학부) ;
  • 이기욱 (앰코테크놀로지코리아 기술연구소) ;
  • 이민재 (앰코테크놀로지코리아 기술연구소) ;
  • 주영창 (서울대학교 재료공학부) ;
  • 박영배 (안동대학교 신소재공학부)
  • Published : 2008.01.31

Abstract

Microstructural evolution and the intermetallic compound (IMC) growth kinetics in an Au stud bump were studied via isothermal aging at 120, 150, and $180^{\circ}C$ for 300hrs. The $AlAu_4$ phase was observed in an Al pad/Au stud interface, and its thickness was kept constant during the aging treatment. AuSn, $AuSn_2,\;and\;AuSn_4$ phases formed at interface between the Au stud and Sn. $AuSn_2,\;AuSn_2/AuSn_4$, and AuSn phases dominantly grew as the aging time increased at $120^{\circ}C,\;150^{\circ}C,\;and\;180^{\circ}C$, respectively, while $(Au,Cu)_6Sn_5/Cu_3Sn$ phases formed at Sn/Cu interface with a negligible growth rate. Kirkendall voids formed at $AlAu_4/Au$, Au/Au-Sn IMC, and $Cu_3Sn/Cu$ interfaces and propagated continuously as the time increased. The apparent activation energy for the overall growth of the Au-Sn IMC was estimated to be 1.04 eV.

Keywords

References

  1. International Technology Roadmap for Semiconductors 1999 Edition, 'Assembly & Packaging', http://www.itrs.net/Links/2000UpdateFinal/AssemblyPkg2000final.pdf, updated 14 January 2008
  2. M. S. Shin and Y. H. Kim, J. Electron. Mater., 32(12), 1448 (2003) https://doi.org/10.1007/s11664-003-0114-2
  3. T. K. Lee, S. Zhang, C. C. Wong, A. C. Tan and D.Hadikusuma, Thin Solid Films, 504, 441 (2006) https://doi.org/10.1016/j.tsf.2005.09.112
  4. P. G. Kim and K. N. Tu, Mater. Chem. Phys., 53(2), 165-171, (1998) https://doi.org/10.1016/S0254-0584(97)02076-2
  5. T. K. Lee, S. Zhang, C. C. Wong and A. C. Tan, Mater.Sci., Eng. A427, 136 (2006) https://doi.org/10.1016/j.msea.2006.04.041
  6. Y. Tian and C. Wang, Mater. Sci. Eng., B95, 254 (2002) https://doi.org/10.1016/S0921-5107(02)00270-2
  7. M. Schaefer R, A. Fournelle and J. Liang, J. Electron.Mater., 27, 1167, (1998) https://doi.org/10.1007/s11664-998-0066-7
  8. E. Imasato, M. Araki, I. Shimizu and Y. Ohno, in Proceedings of Znd Electron. Packag. Technol. conf., 338 (1998) https://doi.org/10.1109/EPTC.1998.756026
  9. K. N. Tu and R. D. Thompson, Acta metall., 30, 947-952, (1982) https://doi.org/10.1016/0001-6160(82)90201-2
  10. Y. C. Chan, A. lex C. K. So and J. K. L. Lai, Mater. Sci. Eng., B55, 5 (1998) https://doi.org/10.1016/S0921-5107(98)00202-5
  11. C. M. Tsai, W. C. Luo, C. W. Chang, Y. C. Shieh and C.R. Kao, J. Electron. Mater., 33(12), 1424 (2004) https://doi.org/10.1007/s11664-004-0082-1
  12. J. W. Yoon and S. B. Jung, J. Mater. Sci., 39, 4211, (2004) https://doi.org/10.1023/B:JMSC.0000033401.38785.73