Effects of Scutellaria radix Extract on Osteoblast Differentiation and Osteoclast Formation

황금 추출물이 조골세포와 파골세포의 활성에 미치는 영향

  • Shin, Jeong-Min (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Chan-Kyung (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Shin, Eun-Ju (Univera) ;
  • Jo, Tae-Hyung (ECONET Corporate Center) ;
  • Hwang, In-Kyeong (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 신정민 (서울대학교 식품영양학과 생활과학연구소) ;
  • 박찬경 (서울대학교 식품영양학과 생활과학연구소) ;
  • 신은주 ((주)유니베라) ;
  • 조태형 ((주)남양에코넷기업본부) ;
  • 황인경 (서울대학교 식품영양학과 생활과학연구소)
  • Published : 2008.12.31

Abstract

Scutellaria radix (SR) has been utilized as a traditional medicine for a variety of diseases including Rheumatoid arthritis and its major flavonoids - baicalein, baicalin, and wogonin - have been reported to exert beneficial health effects, including anti-bacterial, anti-viral, anti-inflammatory, and free-radical scavenging. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of SR on osteoblast and osteoclast cells. SR extract was prepared using 70% ethanol solvent. Osteoblastic MC3T3-E1 cells and osteoclast precursor Raw 264.7 macrophage cells were utilized. SR extract increased MC3T3-E1 cell proliferation and stimulated alkaline phosphatase activity dose-dependently, 152.0% of the control at concentration $1{\mu}g/mL$. Additionally, SR extract ($1{\mu}g/mL$) stimulated Bone nodule formation activity in MC3T3-E1 cells, approximately 223.3% of the control, 20 days after the exposure. In addition, SR extract significantly reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from Raw 264.7 cells. In conclusion, SR extract stimulates the proliferation and bioactivities of boneforming osteoblasts, and inhibits the activities of bone-resorbing osteoclasts to a certain degree.

황금 추출물이 조골세포와 파골세포에 미치는 영향을 세포수준에서 관찰하고자 하였다. 조골세포에 미치는 영향을 관찰하기 위하여, mouse calvaria 유래의 MC3T3-E1 osteoblastic cells를 이용하여 세포 생존률, 염기성 인산분해효소 활성, 골석회화 형성능을 측정하였다. 또한 미분화된 파골세포 전구세포로부터 파골세포의 생성 및 활성에 미치는 영향을 관찰하기 위하여, murine macrophage 유래인 Raw 264.7 cells를 이용하여 M-CSF와 RANKL을 처리하여 파골세포의 분화를 유도하였고, TRAP에 양성인 다핵세포의 형성을 관찰하여 황금추출물이 파골세포의 형성에 미치는 영향을 알아보았다. 황금 추출물이 MC3T3-E1 세포의 증식에 미치는 영향을 MTT assay로 측정한 결과, MC3T3-E1 세포는 처리한 황금 추출물의 농도에 의존적으로 세포의 증식이 촉진되는 경향을 나타내었으며 특히 $1{\mu}g/mL$ 농도에서 130.4%의 증식 효과를 나타내었다. 또한 황금 추출물이 세포에 독성을 나타내지 않는 범위($0.01-1{\mu}g/mL$)에서 MC3T3-E1 세포의 ALP activity를 측정한 결과, 농도에 의존적으로 ALP activity가 증가하였으며 $1{\mu}g/mL$ 농도에서 152.0%의 ALP 활성 증가효과를 나타내었다. 황금 추출물의 최적 작용 농도 $1{\mu}g/mL$에서 골석회화 형성능을 측정한 결과, 배양 시간에 따라 계속 증가하여 배양 20일째는 대조군에 비해 223.3%의 석회화 형성능을 나타내었다. 황금 추출물의 파골세포 분화억제 효과를 알아보기 위해 황금 추출물이 세포에 독성을 나타내지 않는 범위($0.01-10{\mu}g/mL$)에서 TRAP staining한 결과, 황금 추출물은 $0.0{1\mu}g/mL$ 농도에서 대조군에 비해 파골세포 분화를 50% 이상 감소시켰으며 농도 의존적으로 TRAP 양성 세포가 감소함을 관찰하였다. 이상의 결과로 미루어 볼 때, 황금 추출물이 골다공증을 포함한 골질환 예방에 효과가 있을 것으로 사료된다.

Keywords

References

  1. Canalis E, McCarthy T, Centrella M. Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81:277-281 (1988) https://doi.org/10.1172/JCI113318
  2. Raisz LG. Hormonal regulation of bone growth and remodeling. In Cell and Molecular Biology of Vertebrate Hard Tissue CIBA Foundation Symposium 136, pp. 226-238, Wiley, NY, USA (1988)
  3. Lee YS. Effect of isoflavones on proliferation and oxidative stress of MC3T3-E1 osteoblast-like cells. Korea soybean Digest. 18: 35-42 (2001)
  4. Jilka RL. Cytokines, bone remodeling and estrogen deficiency. Bone 23: 75-81 (1998) https://doi.org/10.1016/S8756-3282(98)00077-5
  5. Aldercreutz H, Mazur W. Phyto-estrogens in relation to cancer and other human health risks. Proc. Nutr. Soc. 55: 399-417 (1996) https://doi.org/10.1079/PNS19960038
  6. Keum JC, Kang KH, Kim SB. Effects of estrogen on the tumor necrosis factor-${\alpha}$ induced apoptosis and cytokine gene expression MC3T3-E1 osteoblast. Korean J. Obstet. Gynecol. 44: 324-336 (2001)
  7. Orcel P, Krane SM. Secondary osteoporosis and glucocorticoid include osteoporosis. Ann. Med. Interne. 151: 497-502 (2000)
  8. Karen MP, Carol CP, Lawrence GR. Treatment of osteoporosis. Annu. Rev. Med. 6: 249-256 (1995)
  9. Stein GS, Lian JB, van Wijnen AJ, Montechino M. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 76: 593-629 (1996) https://doi.org/10.1152/physrev.1996.76.2.593
  10. Ryan PJ, Evans P, Gibson T, Fogelman I. Osteoporosis and chronic back pain: A study with single-photon emission computed tomography bone scintigraphy. J. Bone Miner. Res. 7: 1455-1460 (1992) https://doi.org/10.1002/jbmr.5650071213
  11. Cho SH, Kim KG, Kim SR, Lee JA, Moon H, Hwang YY. The effects of 17-${\beta}$ estradiol, medroxyprogesterone acetate and parathyroid hormone on the differentiation of osteoblast cell. Korean J. Obstet. Gynecol. 39: 1497-1506 (1996)
  12. Boonen A, Broos P, Deqeker J. The prevention of treatment of age-related osteoporosis in the elderly by systemic recombinant growth factor therapy (rhIGF-I or rhRGF-${\beta}$): a perspective. J. Internal Med. 242: 285-290 (1997) https://doi.org/10.1046/j.1365-2796.1997.00133.x
  13. Lee YS. Effect of isoflavones on proliferation and oxidatives stress of MC3T3-E1 osteoblastic like cells. Korea Soybean Digest. 18: 35-42 (2001)
  14. Choi EM, Suh KS, Kim YS, Choue RW, Koo SJ. Soybean ethanol extract increases the funtion of osteoblastic MC3T3-E1 cells. Phytochemistry 56: 733-739 (2001) https://doi.org/10.1016/S0031-9422(00)00484-2
  15. Choi EM, Koo SJ. Effects of soybean ethanol extract on the prostaglandin E2 and interleukin-6 production in osteoblastic cells. Food Res. Int. 2002, 35: 893-896 (2002) https://doi.org/10.1016/S0963-9969(02)00101-1
  16. Herbal medicine. Young-lim Sa. Seoul, pp. 218-220 (2004)
  17. Chena YC, Shenb SC, Chena LG, Tony JF, Yang LL. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem. Pharmacol. 61: 1417-1427 (2001) https://doi.org/10.1016/S0006-2952(01)00594-9
  18. Krakauer T, Li B, Young H. The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS. Lett. 500:52-55 (2001) https://doi.org/10.1016/S0014-5793(01)02584-4
  19. Jerome AR, Kim BG. Melatonin Promotes Osteoblast Differentiation and Bone Formation. J. Biol. Chem. 274: 22041-22047 (1999) https://doi.org/10.1074/jbc.274.31.22041
  20. Green LM, Reade JL, Ware CF. Rapid colometric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lympokines. J. Immunol. Methods 70: 257 (1984) https://doi.org/10.1016/0022-1759(84)90190-X
  21. Owen ME. Lineage of osteogenic cells and their relationship to the stromal system. in Bone and Mineral Research, edited by Peck, W.A., pp. 1-25, Elsevier Science Publisher, Amsterdam (1985)
  22. Martin JH, Matthews JL. Mitochondrial granules in chondrocytes, osteoblasts and osteocytes. An ultrastructural and microincineration study. Clin. Orthop. Relat. R. 68: 237-278 (1970)
  23. Ernst M, Heath JK, Lodan GA. Estradiol effects on proliferation messenger ribonucleic acid collagen and insulin-like growth factor-I and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125: 822-833 (1989)
  24. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96: 191-198 (1983) https://doi.org/10.1083/jcb.96.1.191
  25. Kim KY, Lee CS, Lee SH, Lee JD, Kim GS. Primary culture of osteoblast. J. Korean Orthop. Assoc. 26: 1860-1863 (1991)
  26. Cho YH, Park SJ, Shin HJ, Jang KH, Kang SA, Cho RW. Comparative estrogenic effects of Yak-Kong and Soy Bean on the proliferation of human osteoblastic cell line, MG-63. Korean J. Nutr. Soc. 34: 905-911 (2001)
  27. Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation for tissue-specific gene expression during osteoblast differentiation. FASEB. J. 4: 3111-3123 (1990) https://doi.org/10.1096/fasebj.4.13.2210157
  28. Park SK, Shin HS. Effects of extract of natural products on alkaline phosphatase activity of MC3T3-E1 cells. Wonkwang Dental Medicine 10: 89-100 (2001)
  29. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345-57 (1999) https://doi.org/10.1210/er.20.3.345
  30. Mundy GR, Roodman GD. Osteoclast ontogeny and function. Vol. 5, pp. 209-279. In: Bone and Mineral Research, Peck WA (ed). Elsevier, Amsterdam, Netherland (1987)
  31. Claudia MR, Michele L, Gilles C, Alain P, Giulia C. Down-Regulation of osteoclast differentiation by Daidzein via Caspase 3. J. Bone Miner. Res. 17: 630-638 (2002) https://doi.org/10.1359/jbmr.2002.17.4.630
  32. Alice W, Said K, Romuald M, Florence L, Christophe P, Petit JP, Patrice F, Michel B. Potent inhibitory effect of naturally occurring flavonoids ruercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmacol. 65: 35-42 (2003) https://doi.org/10.1016/S0006-2952(02)01445-4