Temperature Compensation Technique for Steel Sleeve Packaged FBG Strain Sensor and Its Application in Structural Monitoring

  • Yun, Ying-Wei (Luoyang Institute of Science and Technology & candidate in Kumoh National Institute of Technology) ;
  • Jang, Il-Young (Civil and Environmental Engineering Dept. Kumoh National Institute of Technology)
  • Published : 2008.12.31

Abstract

As bare Fiber Bragg Grating (FBG) sensors are very fragile, bare FBG without encapsulation is not properly applied in practical infrastructures directly due to the harsh environment in practical engineering. Steel sleeve packaged FBG strain sensor is widely used in civil engineering. Since FBG senses both strain and temperature simultaneously, for accurate measurement of strain, temperature compensation for FBG strain sensors is indispensable. In this paper, based on the FBG's strain and temperature sensing principles, the temperature compensation techniques for steel sleeve packaged FBG sensors are brought forward. And the experiment of concrete early-age shrinkage monitoring by dual FBG sensors is carried out to test the feasibility of the temperature compensation technique.

피복이 없는 FBG센서는 내구성이 매우 약하기 때문에 FBG센서 주위의 피복이 없이는, 많은 변수가 존재하는 실제 자연환경에서의 정확한 데이터수집이 어렵다. Steel sleeve packaged FBG 변형률 센서는 토목공학에서 널리 사용되고 있는 센서 중 하나이다. 변형률과 온도가 동시에 측정되는 FBG센서의 도입 이후로, 변형률과 온도의 정확한 보정은 필수적인 과정이 되었다. 이 논문에서는 FBG의 변형률과 온도의 측정 원리에 기초하여 steel sleeve packaged FBG센서의 온도보정 기술을 도출하였다. 그리고 두개의 FBG센서를 이용한 콘크리트 초기재령의 건조수축 실험을 통해 온도보정의 실행 가능성을 확인하였다.

Keywords

References

  1. Aictin, P.C. (1999) Autogenous Shrinkage of Concrete. edited by Tazawa, E., E & FN Spon, pp. 257-268
  2. Davis H.E. (1940) Autogenous volume change of concrete. Proceeding of the 43rd Annual American Society for Testing Materials, Atlantic City, ASTM, pp. 1103-1113
  3. Hill, K. O., Fujii, Y., Johnson D.C. et al. (1978) Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication. Appl. Phys. Lett. Vol. 32, No. 10, pp. 647-649 https://doi.org/10.1063/1.89881
  4. Iwashima, T., Inoue, A., Shigematsu, M. et al. (1997) Temperature compensation technique for fiber Bragg grating using liquid crystalline polymer tubes. Electronics letters, Vol. 33, No. 5, pp. 417-419 https://doi.org/10.1049/el:19970289
  5. Meltz, G., Morey, W. W and Glenn, W. H. (1989) Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. Vol. 14, No. 15, pp.823-825 https://doi.org/10.1364/OL.14.000823
  6. Tazawa E. and Miyazawa S.(1993) Autogenous shrinkage of concrete and its importance in concrete technology, in: Z.P. Bazant, L. Carol (Eds.), Creep and Shrinkage of Concrete, Proceedings of the 5th International RILEM Symposium, E & FN Spon, London, pp. 159-168
  7. Xu, M.G., Archambault J.L., Reekei L. ,et al.(1994) Discrimination between strain and temperature effects using dual-wave length fiber grating sensors. Electronics letters, Vol. 30, No.13, pp.1085-1087 https://doi.org/10.1049/el:19940746
  8. Xu, M. G., Dong, L. and Reekie, L. et al. (1995) Temperate-independent strain sensor using a chirped Bragg grating in a tapered optical fiber. Electronics Letters, Vol.31, pp.823-825 https://doi.org/10.1049/el:19950542
  9. Zhou Zhi and OU Jinping. (2004) Techniques of temperature compensation for FBG strain sensors. Proceeding of Asian Pascifc Fundamental Problems of Opto- and Microelectronics (APCOM 2004), Khabarovsk, Russia, pp.465-471