Preparation and Treatment of Sulfur Dioxide Gas Generating Agent for Storage of Grape Fruits

포도 저장을 위한 아황산가스 발생제의 제조 및 처리 방법

  • 최성진 (대구가톨릭대학교 생명공학과)
  • Published : 2008.12.31

Abstract

In order to establish the method to prepare and use the sulfur dioxide gas generating agent in low temperature storage of grape fruits, the $SO_2$ generation capacity from various sulfite compounds was investigated, and the method to regulate $SO_2$ gas generation and to detect the gas was developed. The conidial germination and mycelium growth of Botrytis cinerea which causes gray mold disease during grape fruit storage was completely inhibited at the $SO_2$ gas concentration of 400 ppm and 3200 ppm, respectively. Sodium hydrosulfite generated the most amount of $SO_2$ gas among the investigated 5 different sulfite or bisulfite compounds. By adjusting the number of pinholes on packaging film of the compound or by adding pH adjusting agent, e.g. citric acid or phosphates, it was possible to regulate the amount and duration of $SO_2$ gas generation from the compound. Because malachite green was quantitatively discolored by $SO_2$ gas, the solution or impregnated paper with the compound could be practically utilized as a indicator detecting $SO_2$ gas. Finally, when Muscat Bailey A grape was stored at low temperature with $SO_2$ gas generating agent, the disease incidence was reduced after storage.

아황산가스 발생제를 자가 제조하여 포도의 저장 중 병해발생 방지에 이용하는 방법을 확립하기 위하여 sulfite 화합물의 아황산가스 발생 정도와 지속 기간을 측정하고 아황산가스 발생 조절 및 간이 검출 방법을 개발하였다. 포도의 저장 중 잿빛곰팡이병을 일으키는 B. cinerea의 포자 발아와 균사생장은 각각 400 ppm과 3200 ppm의 아황산가스 농도 조건에서 억제되었다. 5종류의 sulfite 및 bisulfite 화합물 중 sodium hydrosulfite는 아황산가스 발생량이 가장 높았으며 이를 비닐 포장하여 포장의 pinhole수를 조절하거나 산 또는 알카리의 pH 조절제를 혼합하면 가스 발생량과 발생 지속 기간을 조절할 수 있었다. Malachite green 용액은 아황산가스에 의해 정량적으로 탈색되어 아황산가스 검출에 이용할 수 있었으며 여과지에 흡수하여 건조할 경우 아황산가스 검출지로 활용할 수 있었다. MBA 포도를 속효성과 지효성의 아황산가스 발생제를 동시에 처리하여 저온 저장할 경우 병해 발생을 감소시킬 수 있었다.

Keywords

References

  1. Hardenburg, R.E., Watada, A.E. and Wang, C.Y. (1985) The Commercial storage of fruits, vegetables, and florist and nursery stocks. USDA Handbook 66, 41-42
  2. Ballinger, W.E., Maness, E.P. and Nesbitt, W.B. (1985) Sulfur dioxide for long-term low temperature storage of Ervitis hybrid bunch grapes. HortScinece 20, 916-918
  3. Babich, H. and Stotzky, G. (1980) Gaseous and heavy metal pollutants. In: Burns, R.G., Slater, J.H. (Eds.), Experimental Microbial Ecology. Blackwell, Oxford, p. 631
  4. Federal Registry. 1989. Pesticide tolerance for sulfur dioxide. Federal Registry 54, 20125-20126
  5. Zapsalis, C. and Francis, F.J. (1965) Cranberry antocyanins. J. Food. Sci. 30, 396-399 https://doi.org/10.1111/j.1365-2621.1965.tb01775.x
  6. Milani, M.R., Neto, J.A.G. and Cardoso1, A.A. (1999) Colorimetric determination of sulfur dioxide in air using a droplet collector of malachite green solution. Microchem. J. 62, 273-281 https://doi.org/10.1006/mchj.1999.1729
  7. Franck, J., Latorre, B.A. Torres, R. and Zoffoli, J.P. (2005) The effect of preharvest fungicide and postharvest sulfur dioxide use on postharvest decay of table grapes caused by Penicillium expansum. Postharvest Biol. Technol., 37, 20-30 https://doi.org/10.1016/j.postharvbio.2005.02.011