Optimization of Microwave-assisted Extraction Conditions for Total Catechin and Electron Donating Ability of Grape Seed Extracts

포도씨 추출물의 총 카테킨 함량과 전자공여능에 대한 마이크로웨이브 추출조건 최적화

  • Lee, Eun-Jin (Korea Food & Drug Administration) ;
  • Kim, Jeong-Sook (Department of Food Nutrition & Culinary, Keimyung College) ;
  • Kwon, Joong-Ho (Department of Food Science and Technology, Kyungpook National University)
  • 이은진 (대구지방식품의약품안전청) ;
  • 김정숙 (계명문화대학 식품영양조리과) ;
  • 권중호 (경북대학교 식품공학과)
  • Published : 2008.12.31

Abstract

Microwave-assisted extraction (MAE) of grape seeds was performed under the different conditions based on a central composite design for independent variables of microwave power ($0{\sim}120\;W$), ethanol concentration ($0{\sim}100%$) and extraction time ($1{\sim}5\;min$). Response surface methodology (RSM) was used to predict the optimum extraction conditions for three dependent variables in grape seed extracts: total yield, total catechin and electron donating ability. Determination coefficients ($R^2$) of regression equations for the three dependent variables were higher than 0.9 (p < 0.01). The optimal MAE conditions to yield the maximum value of total catechin (434.16 mg%) were 122.76 W microwave power, 42.88% ethanol and 4.67 min extraction time. The superimposed contour maps for maximizing the three dependent variables indicated that the MAE condition ranges were 75150 W, 4060% ethanol and 3.55.0 min. The predicted values at the optimized conditions (6.72% total yield, 408.65 mg% total catechin, and 83.33% electron donation ability) were similar to the experimental values. The optimized MAE (112.5 W, 50% EtOH, 4.2 min) was more efficient than the conventional solvent extraction using 80% EtOH, $60^{\circ}C$ for 3h and 150 rpm.

포도씨의 총 카테킨 함량과 추출물의 항산화성을 극대화하기 위한 마이크로웨이브 추출조건의 최적화를 시도하였다. 중심합성계획에 따라 추출조건(microwave power $0{\sim}120\;W$, 에탄올 농도 $0{\sim}100%$, 추출시간 $1{\sim}5\;min$)을 설계하고, 종속변수로서 추출물의 수율, 카테킨 함량 및 전자공여능을 회귀 분석함으로써 최적 추출조건을 예측하였다. 모든 회귀식의 $R^2$는 0.9 이상으로 1% 수준에서 유의성이 인정되었다. 총 카테킨 함량의 최대 추출 값은 434.16 mg%로 예측되었으며, 추출조건은 microwave power 122.76 W, 에탄올 농도 42.88%, 추출시간 4.67 min으로 나타났다. 추출물에 대한 세 가지 종속변수의 극대 값을 얻기 위한 추출조건 범위는 $75{\sim}150\;W$, $40{\sim}60%$$3.5{\sim}5.0\;min$이었다. 이상의 예측 값(총 추출수율 6.72%, 총 카테킨 함량 408.65mg%, 전자공여능 83.33%)은 실제 값과 유의적인 차이가 없었으며, 최적화된 마이크로웨이브 추출법(112.5 W, 50% 에탄올, 4.2분)은 현행추출법 (80% 에탄올, $60^{\circ}C$, 3시간, 150 rpm)에 비해 추출효율이 우수하였다.

Keywords

References

  1. Gabetta, B., Fuzzati, N., Griffini, A., Lolla, E., Pace, R., Ruffilli, T. and Peterlongo, F. (2000) Characterization of proanthocyanidins from grape seeds. Fitoterapia, 71, 162-175 https://doi.org/10.1016/S0367-326X(99)00161-6
  2. Pack, S.J., Lee, H.Y. and Oh, D.H. (2003) Free radical scavenging effect of seed and skin extracts from Campbell early grape(Vitis labruscana B.). J. Korean Soc. Food Sci. Nutr., 32, 115-118 https://doi.org/10.3746/jkfn.2003.32.1.115
  3. Jang, J.K. and Han, J.Y. (2002) The antioxidant ability of grape seed extracts. Korean J. Food Sci. Technol., 34, 524-528
  4. Chung, H.Y. and Yoon, S.J. (2002) Antioxidant activity of grape seed extract. J. Korean Soc. Food Sci. Nutr., 31, 893-898 https://doi.org/10.3746/jkfn.2002.31.5.893
  5. Tabib, K., Bitri, L., Besancon, P. and Rouanet, J. (1994) Polymeric grape seed tannins prevent plasma-cholesterol changes in high-cholesterol-fed rats. Food Chem., 49, 403-406 https://doi.org/10.1016/0308-8146(94)90012-4
  6. Yamakoshi, J., Kataoka, S., Koga, T. and Ariga, T. (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol- fed rabbits. Atherosclerosis, 142, 139-149 https://doi.org/10.1016/S0021-9150(98)00230-5
  7. Bagchi, D., Bagchi, M., Stohs, S.J., Das, D.K., Ray, S.D., Kuszynski, C.A., Joshi, S.S. and Pruess, H.G. (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 148, 187-197 https://doi.org/10.1016/S0300-483X(00)00210-9
  8. Pack, S.J., Lee, H.Y., Pack, B.K. and Oh, D.H. (2002) Screening biological activities of grape seed and skin extracts of Campbell Early (Vitis labruscana B.). Nutraceuticals Food, 7, 231-237 https://doi.org/10.3746/jfn.2002.7.3.231
  9. Jayaprakasha, G.K., Selvi, T. and Sakariah, K.K. (2003) Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts, Food Res. Int., 36, 117-122 https://doi.org/10.1016/S0963-9969(02)00116-3
  10. Chung, H.Y. and Pack, D.K. (2003) Antimicrobial activity of grape seed extract. J. Korean Soc. Food Sci. Nutr., 32, 109-114 https://doi.org/10.3746/jkfn.2003.32.1.109
  11. KFDA. (2008) Food Additives Code, Korea Food & Drug Administration (http://kfda.go.kr), Seoul, Korea
  12. KFDA. (2006) Health Functional Food Code, Korea Food & Drug Administration (http://kfda.go.kr), Seoul, Korea
  13. KFDA. (2006) Health Functional Food Code, Korea Food & Drug Administration (http://kfda.go.kr), Seoul, Korea
  14. Pekić, B., Kovac, V., Alonso, E. and Revilla, E. (1998) Study of the extraction of proanthocyanidins from grape seeds. Food Chem., 61, 201-206 https://doi.org/10.1016/S0308-8146(97)00128-3
  15. Paré, J.R.J., Sigouin, M., and Lapointe, J. (1991) Microwave-assisted natural products extraction. US Patent 5, 002, 784, 26 March
  16. Lopez-Avila, V., Young, R. and Teplitsky, N. (1996) Microwave-assisted extraction as an alternative to soxhlet, sonication, and supercritical fluid extraction. J. AOAC Int., 79, 142-156
  17. Kwon, J.H. (1998) High speed extraction of phytochemicals from food and natural products using microwave-assisted process. Food Sci. Ind., 31, 43-55
  18. Lee, E.J. and Kwon, J.H. (2006) Characteristics of microwave-assisted extraction for grape seed components with different solvents. Korean J. Food Preserv., 13, 216-222
  19. Kwon, J.H., Belanger, J.M.R. and Pare J.R.J. (2003) Optimization of microwave- assisted extraction (MAP) for ginseng components by response surface methodology. J. Agric. Food Chem., 51, 1807-1810 https://doi.org/10.1021/jf026068a
  20. Kwon, J.H., Lee, G.D., Bélanger, J.M.R. and Paré, J.R.J. (2003) Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave-assisted process (MAP). Int. J. Food Sci. Technol., 38, 615-622 https://doi.org/10.1046/j.1365-2621.2003.00688.x
  21. Lee, G.D., Lee, J.E. and Kwon, J.H. (2000) Application of response surface methodology in food industry. Food Sci. Ind., 33, 33-45
  22. Myers, R.H. (1971) Response Surface Methodology. Allyn and Bacon Inc. Boston, USA., pp. 61-218
  23. Gontard, N., Guilbert, S. and Cuq JL. (1992) Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci., 57, 190-196 https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  24. SAS Institute Inc. (2002) SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA
  25. Matha, L.A. and James P.B. (1992) The Mathematica Handbook, compatible with Mathematica Version 2.0. Academic Press, Inc. Harcourt Brace & Co., Massachusetts, USA
  26. Ricardo da Silva, J.M., Rigaud, J., Cheynier, V., Cheminat, A. and Moutounet M. (2002) Procyanidin dimers and trimers from grape seeds. Phytochemistry, 30, 1259-1264 https://doi.org/10.1016/S0031-9422(00)95213-0
  27. Moon, S.O., Lee, J.Y., Kim, E.J. and Choi, S.W. (2003) An improved method for determination of catechin and its derivatives in extract and oil of grape seeds. Korean J Food Sci. Technol., 35, 576-585
  28. Blois, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 4617, 1198-1199
  29. Peng, Z., Hayasaka, Y., Iland, P.G., Sefton, M., Hoj, P. and Waters, E.J. (2001) Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis venifera) seeds by reverse phase high-performance liquid chromatograpy, J. Agric. Food Chem., 49, 26-31 https://doi.org/10.1021/jf000670o
  30. Anonymous (2003) Commercial Extraction Manuals on Grape Seed Extract. MSC, Yang San, Korea
  31. Kwon, Y.J., Noh, J.E., Lee, J.E., Lee, S.H., Choi, Y.H. and Kwon, J.H. (2005) Prediction of optimal extraction conditions in microwave-assisted process for antioxidant- related components from Thymus quinquecostatus. Korean J. Food Preserv., 12, 344-349
  32. Jayaprakasha, G.K., Singh, R.P. and Sakariah, K.K. (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro, Food Chem., 73, 285-290 https://doi.org/10.1016/S0308-8146(00)00298-3
  33. Lee, E.J. (2004) Optimization of microwave-assisted extraction conditions for grape seed components. MS Thesis, Kyungpook National University, Daegu, Korea
  34. Zielinski, H. and Kozlowska, H. (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem., 48, 2008-2016 https://doi.org/10.1021/jf990619o
  35. Kwak, C.S., Kim, S.A. and Lee, M.S. (2005) The correlation of antioxidant effects of 5 Korean common edible seaweeds and total phenol content. J. Korean Soc. Food Sci. Nutr., 34, 1143-1150 https://doi.org/10.3746/jkfn.2005.34.8.1143
  36. Kwon, J.H. and Kim, K. E. (1999) Comparative effects of microwave-assisted process under atmospheric pressure condition and conventional process on extraction efficiencies ginseng components. J. Korean Soc. Food Sci. Nutr., 28, 586-592
  37. Kwon, J.H., Bélanger, J.M.R., Paré, J.R.J. and Yaylayan VA. (2003) Application of microwave-assisted process (MAP) to the fast extraction of ginseng saponins. Food Res. Int.., 36, 491-498 https://doi.org/10.1016/S0963-9969(02)00197-7
  38. Kwon, J.H., Lee, G.D., Kim, K.E., Bélanger, J.M.R. and Paré, J.R.J. (2004) Monitoring and optimization of microwave-assisted extraction for total solid, crude saponin, and ginsenosides from ginseng roots. Food Sci. Biotechnol., 13, 309-314