Advanced Glycation Endproduct-induced Diabetic Complications

  • Lee, Hyun-Sun (Institute of Life Science and Natural Resource, Korea University) ;
  • Hong, Chung-Oui (Division of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Division of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University)
  • Published : 2008.12.31

Abstract

Diabetic complications are a leading cause of blindness, renal failure, and nerve damage. Additionally, diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke, and limb amputation. At the present time, 4 main molecular mechanisms have been implicated in hyperglyceamia-mediated vascular damage. In particular, advanced glycation endproducts (AGE), which are formed by complex, heterogeneous, sugar-derived protein modifications, have been implicated as a major pathogenic process for diabetic complications. Recently, AGE inhibitors such as aminoguanidin, ALT-946, and pyridoxamine have been reported. Such an integrating paradigm provides a new conceptual framework for future research on diabetes complications and on discovering drugs to prevent the progression of AGE-induced maladies.

Keywords

References

  1. Evans E, Patry R. Management of gestational diabetes mellitus and pharmacists' role in patient education. Am. J. Health-Syst. Ph. 61: 1460-1465 (2004)
  2. Argoff CE, Cole BE, Fishbain DA, Irving GA. Diabetic peripheral neuropathic pain: Clinical and quality-of-life issues. Mayo Clin. Proc. 81: 3-11 (2006) https://doi.org/10.1016/S0025-6196(11)61474-2
  3. Sarti C, Gallagher J. The metabolic syndrome: Prevalence, CHD risk, and treatment. J. Diabetes Complicat. 20: 121-132 (2006) https://doi.org/10.1016/j.jdiacomp.2005.06.014
  4. Somoza V. Five years of research on health risks and benefits of Maillard reaction products: An update. Mol. Nutr. Food Res. 49: 663-672 (2005) https://doi.org/10.1002/mnfr.200500034
  5. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interactions with AGE receptors in vascular disease and diabetes mellitus: AGE concept. Cardiovasc. Res. 37: 586-600 (1998) https://doi.org/10.1016/S0008-6363(97)00233-2
  6. Vlassara H, Stricker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycation end-products induce glomerular sclerosis and albuminuria in normal rats. P. Natl. Acad. Sci. USA 91: 11704-11708 (1994)
  7. Yamagishi S, Nakamura K, Matsui T. Advanced glycation end products (AGEs) and their receptor (RAGE) system in diabetic retinopathy. Curr. Drug. Discov. Technol. 3: 83-88 (2006) https://doi.org/10.2174/157016306776637555
  8. Weissman AJ. Intensive diabetes treatment and cardiovascular disease. New Engl. J. Med. 354: 1751-1752 (2006) https://doi.org/10.1056/NEJMc060105
  9. Wirasathien L, Pengsuparp T, Suttisri R, Ueda H, Moriyasu M, Kawanishi K. Inhibitors of aldose reductase and advanced glycation end-products formation from the leaves of Stelechocarpus cauliflorus R.E. Fr. Phytomedicine 14: 546-550 (2007) https://doi.org/10.1016/j.phymed.2006.09.001
  10. Jang DS, Kim JM, Lee YM, Kim YS, Kim JH, Kim JS. Puerariafuran, a new inhibitor of advanced glycation end products (AGEs) isolated from the roots of Pueraria lobata. Chem. Pharm. Bull. 54: 1315-1317 (2006) https://doi.org/10.1248/cpb.54.1315
  11. Reichard P, Nilsson BY, Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. New Engl. J. Med. 329: 304-309 (1993) https://doi.org/10.1056/NEJM199307293290502
  12. Service FJ, Rizza RA, Daube JR, O'Brian PC, Dyck PJ. Near normoglycaemia improved nerve conduction and vibration in diabetic neuropathy. Diabetologia 28: 722-727 (1985)
  13. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820 (2001) https://doi.org/10.1038/414813a
  14. Misawa S, Kuwabara S, Kanai K, Tamura N, Nakata M, Sawai S, Yagui K, Hattori T. Aldose reductase inhibition alters nodal $Na^+$ currents and nerve conduction in human diabetics. Neurology 66: 1545-1549 (2006) https://doi.org/10.1212/01.wnl.0000216260.39452.bf
  15. Pacher P, Szabo C. Role of poly (ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid. Redox. Sign. 7: 1568-1580 (2004) https://doi.org/10.1089/ars.2005.7.1568
  16. Williamson JR, Chang K, Frangos M, HasanKS, Ido Y, Kawamura T, Nyengaard JR, Enden M, Kilo C, Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801-813 (1993) https://doi.org/10.2337/diabetes.42.6.801
  17. Ii S, Ohta M, Kudo E, Yamaoka T, Tachikawa T. Redox statedependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency. Diabetologia 47: 541-544 (2004) https://doi.org/10.1007/s00125-004-1325-7
  18. Abebe W, MacLeod KM. Protein kinase C-mediated contractile responses of arteries from diabetic rats. Brit. J. Pharmacol. 101: 465-471 (1990) https://doi.org/10.1111/j.1476-5381.1990.tb12731.x
  19. Legan E. Effects of streptozotocin-induced hyperglycemia on agonist-stimulated phosphoinositol turnover in rat aorta. Life Sci. 45: 371-378 (1989) https://doi.org/10.1016/0024-3205(89)90622-X
  20. Palm F. Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy. Clin. Exp. Pharmacol. P. 33: 997-1001 (2006) https://doi.org/10.1111/j.1440-1681.2006.04473.x
  21. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 101: 160-169 (1998) https://doi.org/10.1172/JCI119875
  22. Xu Y, He Z, King GL. Introduction of hyperglycemia and dyslipidemia in the pathogenesis of diabetic vascular complications. Curr. Diab. Rep. 5: 91-97 (2005) https://doi.org/10.1007/s11892-005-0034-z
  23. Takeuchi M, Kikuchi S, Sasaki N, Suzuki T, Watai T, Iwaki Bucala R, Yamagishi S. Involvement of advanced glycation end-products (AGEs) in Alzheimer's disease. Curr. Alzheimer Res. 1: 39-46 (2004) https://doi.org/10.2174/1567205043480582
  24. Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology 42: 1242-1246 (2003) https://doi.org/10.1093/rheumatology/keg324
  25. Suzuki D, Miyata T, Saotome N, Horie K, Inagi R. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesion. J. Am. Soc. Nephrol. 10: 822-832 (1999)
  26. Lusis AJ. Atherosclerosis. Nature 407: 233-241 (2000) https://doi.org/10.1038/35025203
  27. Reddy S, Bichler J, Wells-Knecht KJ, Thorpe SR, Baynes JW. Ne-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34: 10872-10878 (1995) https://doi.org/10.1021/bi00034a021
  28. Sato T, Shimogaito N, Wu X, Kikuchi S, Yamagishi S, Takeuchi M. Toxic advanced glycation end products (TAGE) theory in Alzheimer's disease. Am. J. Alzheimers Dis. Other Demen. 21: 197-208 (2006) https://doi.org/10.1177/1533317506289277
  29. Takeuchi M, Makita Z, Yanagisawa K, Kameda Y, Koike T. Detection of noncarboxymethyllysine and carboxymethyllysine advanced glycation end products (AGE) in serum of diabetic patients. Mol. Med. 5: 393-405 (1999)
  30. Zeng J, Dunlop RA, Rodgers KJ, Davies MJ. Evidence for inactivation of cysteine proteases by reactive carbonyls via glycation of active site thiols. Biochem. J. 398: 197-206 (2006) https://doi.org/10.1042/BJ20060019
  31. Nawroth PP, Bierhaus A, Vogel GE, Hofmann MA, Zumbach M, Wahl P, Ziegler R. Non-enzymaticglycation and oxidative stress in chronic illness and diabetes mellitus. Med. Klin. 94: 29-38 (1999)
  32. Rumble JR, Cooper ME, Soulis-Liparota T, Cox A, Wu L. Vascular hypertrophy in experimental diabetes: Role of advanced glycation end-products. J. Clin. Invest. 99: 1016-1027 (1997) https://doi.org/10.1172/JCI119229
  33. Hill MA, Ege EA. Active and passive mechanical properties of isolated arterioles from STZ-induced diabetic rats: Effect of aminoguanidine treatment. Diabetes 43: 1450-1456 (1994) https://doi.org/10.2337/diabetes.43.12.1450
  34. Goldin A, Joshua AB, Schmidt AM, Creager MA. Advanced glycation end products sparking the development of diabetic vascular injury. Circulation 114: 597-605 (2006) https://doi.org/10.1161/CIRCULATIONAHA.106.621854
  35. Odetti P, Aragno I, Rolandi R, Garibaldi S, Valentini S. Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: Role of protein glycation. Diabetes Metab. 16: 74-81 (2000) https://doi.org/10.1002/(SICI)1520-7560(200003/04)16:2<74::AID-DMRR80>3.0.CO;2-1
  36. Yan SD, Schmidt AM, Anderson MG, Zhang J, Brett J. Enhanced cellular oxidant stress by the interaction of advanced glycation endproducts with their receptors/binding proteins. J. Biol. Chem. 269: 9889-9897 (1994)
  37. Chappey O, Dosquet C, Wautier MP, Wautier JL. Advanced glycation end-products, oxidant stress, and vascular lesions. Eur. J. Clin. Invest. 27: 97-108 (1997) https://doi.org/10.1046/j.1365-2362.1997.710624.x
  38. Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptors for advanced glycation end-products: Implication for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler. Thromb. 14: 1521-1527 (1994) https://doi.org/10.1161/01.ATV.14.10.1521
  39. Galle J, Schneider R, Winner B, Lehmann-Boden C, Schinzel R. Glyco-oxidized LDL impair endothelial function more potently than oxidized LDL: Role of enhanced oxidative stress. Atherosclerosis 138: 65-77 (1998) https://doi.org/10.1016/S0021-9150(98)00005-7
  40. Donato R. RAGE: A single receptor for several ligands and different cellular responses: The case of certain S100 proteins. Curr. Mol. Med. 7: 711-724 (2007) https://doi.org/10.2174/156652407783220688
  41. Galle J, Lenhmann-Bodem C, Hubner U, Heinloth A, Wanner C. CyA and OxLDL cause endothelial dysfunction in isolated arteries through endothelinmediated stimulation of O(2)(-) formation. Nephrol. Dial. Transpl. 15: 339-346 (2000) https://doi.org/10.1093/ndt/15.3.339
  42. Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int. Suppl. 106: 17-26 (2007)
  43. Pieper GM, Dondlinger LA. Plasma and vascular tissue arginine are decreased in diabetes: Acute arginine supplementation restores endotheliumdependent relaxation by augmenting cGMP. J. Pharmacol. Exp. Ther. 283: 684-691 (1997)
  44. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K, Kaneko S. Increased oxidative stress precedes the onset of high-fat dietinduced insulin resistance and obesity. Metabolism 57: 1071-1077 (2008) https://doi.org/10.1016/j.metabol.2008.03.010
  45. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57: 1446-1454 (2008) https://doi.org/10.2337/db08-0057
  46. Kakkar R, Mantha SV, Kalra J, Prasad K. Time course study of oxidative stress in aorta and heart of diabetic rats. Clin. Sci. 91: 441-448 (1996) https://doi.org/10.1042/cs0910441
  47. Wang YK, Hong YJ, Huang ZQ. Protective effects of silybin on human umbilical vein endothelial cell injury induced by $H_2O_2$ in vitro. Vasc. Pharmacol. 43: 198-206 (2005) https://doi.org/10.1016/j.vph.2005.06.002
  48. Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology 10: 7-10 (2005) https://doi.org/10.1111/j.1440-1797.2005.00365.x
  49. Munzel T, Heitzer T, Harrison DG. The physiology and pathophysiology of the nitric oxide/superoxide anions. Herz 22: 158-172 (1997) https://doi.org/10.1007/BF03044353
  50. Thornalley PJ, Yurek-George A, Argirov AK. Kinetics and mechanism of the reaction of aminoguanidine with alphaoxaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem. Pharmacol. 60: 55-65 (2000) https://doi.org/10.1016/S0006-2952(00)00287-2
  51. Price DL, Rhett PM, Thorpe SR, Baynes JW, Chelating activity of advanced glycation end-product inhibitors. J. Biol. Chem. 276: 48967-48972 (2001) https://doi.org/10.1074/jbc.M108196200
  52. Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol. Biol. 54: 405-419 (2006) https://doi.org/10.1016/j.patbio.2006.07.006
  53. Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am. J. Pathol. 159: 513-525 (2001) https://doi.org/10.1016/S0002-9440(10)61723-3
  54. Flyvberg A, Denner L, Schrijvers B, Tilton RG, Mogensen TH, Paludan SR. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53: 166-172 (2004) https://doi.org/10.2337/diabetes.53.2007.S166
  55. Jensen IJ, Denner I, Schrijers BF, Tilton RG, Rash R, Flyvgerg A. Renal effects of a neutralizing RAGE-antibody in long-term streptozotocin-diabetic mice. J. Endocrinol. 188: 493-501 (2006) https://doi.org/10.1677/joe.1.06524
  56. Booth AA, Khalifah RG, Todd P, Hudson BG. In vitro kinetics studies of formation of antigenic advanced glycation end products (AGEs). J. Biol. Chem. 272: 5387-5430 (1997)
  57. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB for the ACTIONI Investigator Group. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol. 24: 32-40 (2004) https://doi.org/10.1159/000075627
  58. Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S. Advanced glycation end-product cross-link breakers: A novel approach to cardiovascular pathologies related to the aging process. Am. J. Hypertens.17: 23-30 (2004)
  59. Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyrodoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. J. Biol. Chem. 275: 21177-21184 (2000) https://doi.org/10.1074/jbc.M003263200
  60. Voziyan PA, Khalifah RG, Thibaudeau C, Yildiz A, Jacob J, Seriani S. Modification of proteins in vitro by physiological levels of glucose. J. Biol. Chem. 278: 46616-46624 (2003) https://doi.org/10.1074/jbc.M307155200
  61. Voziyan PA, Hudson BG. Pyridoxamine: The many virtues of a maillard reaction inhibitor. Ann. NY Acad. Sci. 1043: 807-816 (2005) https://doi.org/10.1196/annals.1333.093
  62. Yang S, Litchfield JE, Baynes JW. AGE-breakers cleave model compounds but not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch. Biochem. Biophys. 412: 42-46 (2003) https://doi.org/10.1016/S0003-9861(03)00015-8
  63. Vasan S, Foiles P, Founds H. Therapeutic potential odd breakers of advanced glycation end product-protein cross links. Arch. Biochem. Biophys. 419: 89-96 (2003) https://doi.org/10.1016/j.abb.2003.08.016
  64. Little WC, Zile MR, Kitzman DW, Hundley WG, O'Brien TX, Degroof RC. The effect of alagebrium chloride (ALT 711), a novel glucose crosslink breaker, in treatment of elderly patients with diastolic heart failure. J. Card. Fail. 11: 191-195 (2005) https://doi.org/10.1016/j.cardfail.2004.09.010
  65. Chen XM, Kitts DD. Determining conditions for nitric oxide synthesis in Caco-2 cells using Taguchi and factorial experimental designs. Anal. Biochem. 381: 185-192 (2008) https://doi.org/10.1016/j.ab.2008.07.013
  66. Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 419: 31-40 (2003) https://doi.org/10.1016/j.abb.2003.08.013
  67. Miyata T, Ueda Y, Yamada Y, Izuhara Y, Wada T, Jadoui M. Accumulation of carbonyls accelerates the formation of pentosidine, advanced glycation end product: Carbonyl stress in uremia. J. Am. Soc. Nephrol. 9: 2349-2356 (1998)
  68. Miyata T, Yamamoto M, Izuhara Y. From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy. Ann. NY Acad. Sci. 1043: 740-749 (2005) https://doi.org/10.1196/annals.1333.086
  69. Figarola JL, Scott S, Loera S, Xi B, Synold T, Weiss I. Prevention of early renal disease, dyslipidemia, and lipid peroxidation in STZ-diabetic rats by LR-9 and LR-74 novel AGE inhibitors. Diabetes Metab. Res. 21: 533-544 (2005) https://doi.org/10.1002/dmrr.550
  70. Voziyan PA, Metz TO, Baynes JW, HudsonBG. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J. Biol. Chem. 277: 3397-3403 (2002) https://doi.org/10.1074/jbc.M109935200
  71. Babei-jadidi R, Karachalian N, Ahmed N, Battab S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52: 2110-2120 (2003) https://doi.org/10.2337/diabetes.52.8.2110
  72. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumara T, Ju Q. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med. 9: 294-299 (2003) https://doi.org/10.1038/nm834
  73. Vasan S, Zhang X, Karpurniotu A, Bernhagen J, Teichberg S. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382: 211-212 (1996) https://doi.org/10.1038/382211a0