Immunostimulating and Anticancer Activities of Hot-water Extracts from Acanthopanax senticosus and Glycyrrhiza uralensis

  • Hwang, Jong-Hyun (Division of Food and Biotechnology, Chungju National University) ;
  • Suh, Hyung-Joo (Department of Food and Nutrition, Korea University) ;
  • Yu, Kwang-Won (Division of Food and Biotechnology, Chungju National University)
  • Published : 2008.12.31

Abstract

When 10 kinds of herbal medicines were fractionated into hexane, MeOH, cold-water, and hot-water extracts, hot-water extracts from Acanthopanax senticosus (AS), Glycyrrhiza uralensis (GU), Cichorium intybus (CI), and Polygonatum odoratum (PO) showed the potent intestinal immune system modulating activity (1.72-, 1.62-, 1.60-, and 1.53-fold of control at $100{\mu}g/mL$, respectively). Especially, hot-water extracts from AS (215% compared with the control) and GU (187%) also had macrophages stimulating activity and mitogenic activity of splenocytes (7.1- and 6.5-fold) at $100{\mu}g/mL$. In addition, the effects of hot-water extracts from herbal medicines on anticancer activities were studied in mice. Hot-water extracts from AS and GU enhanced cytotoxicity of natural killer cell against cancer cell, Yac-1 (37 and 34% cytotoxicity) at E/T ratio 100:1, and colon 26-M3.1 cancer cell lines had significantly inhibited (82.1 and 75.2%) in experimental lung metastasis. These results suggest that hot-water extracts from A. senticosus and G. uralensis can be used as biological response modifiers to stimulate immune system and inhibit tumor.

Keywords

References

  1. Lemberkovics E, Czinner E, Szentmihalyi K, Balazs A, Szoke E. Comparative evaluation of Helichrysi flos herbal extracts as dietary sources of plant polyphenols, and macro- and microelements. Food Chem. 78: 119-127 (2002) https://doi.org/10.1016/S0308-8146(02)00204-2
  2. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaltis E. Effects of beta-glucans on the immune system. Medicina 43: 597-606 (2007)
  3. Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines. Part II. High molecular compounds (3). Planta Med. 69: 193-201 (2003) https://doi.org/10.1055/s-2003-38494
  4. Davydov M, Krikorian AD. Eleutherococcus senticosus (Rupr. & Maxim) Maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 72: 345-393 (2000) https://doi.org/10.1016/S0378-8741(00)00181-1
  5. Shin SM, Hong ST. Acanthopanax and Platycodi independently prevents the onset of high fat diet induced hyperglyceridemia and obesity in C57BL/6 mice. Food Sci. Biotechnol. 14: 841-846 (2005)
  6. Ha ES, Hwang SH, Shin KS, Yu KW, Lee KH, Choi JS, Park WM, Yoon TJ. Anti-metastatic activity of glycoprotein fractionated from Acanthopanax senticosus, involvement of NK-cell and macrophage activation. Arch. Pharm. Res. 27: 217-224 (2004) https://doi.org/10.1007/BF02980109
  7. Hong T, Matsumoto T, Kiyohara H, Yamada H. Enhanced production of hematopoeitic growth factors through T cell activation in Peyer's patches by oral administration of kampo (Japanese herbal) medicine 'Juzen-Taiho-To'. Phytomedicine 5: 163-168 (1998)
  8. Page B, Page M, Noel C. A new fluorometric assay for cytotoxicity measurements in vitro. Int. J. Oncol. 3: 473-476 (1993)
  9. Conrad RE. Induction and collection of peritoneal exudates macrophages. pp. 5-11. In: Manual of Macrophage Methodology. Herscowitz BH, Holden HT, Bellanti JA, Ghaffar A (eds). Marcel Dekker Incorporation, New York, NY, USA (1981)
  10. Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T. Effect of orally administered-glucan on macrophage function in mice. Int. J. Immunopharmacol. 12: 675-684 (1990) https://doi.org/10.1016/0192-0561(90)90105-V
  11. Sugawara I, Kimoto M, Fujimoto M, Ishizaka S, Tsuji T, Nishiyama T. MTT assay, rapid colorimetric assay applicable to cellular proliferation and cytotoxicity assay. Igakuno Ayumi 123: 733-735 (1984)
  12. Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki K, Azuma I. Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn. J. Cancer Res. 88: 184-190 (1997) https://doi.org/10.1111/j.1349-7006.1997.tb00364.x
  13. Kasai M, Yoneda T, Habu S, Maruyama Y, Okumura K, Tokunaga T. In vivo effect of anti-asialo GM1 antibody on natural killer activity. Nature 291: 334-335 (1981) https://doi.org/10.1038/291334a0
  14. Wershil BK, Furuta GT. Gastrointestinal mucosal immunity. J. Allergy Clin. Immun. 121: S380-S383 (2008) https://doi.org/10.1016/j.jaci.2007.10.023
  15. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3: 331-341 (2003) https://doi.org/10.1038/nri1057
  16. James SP, Zeitz M. Human gastrointestinal mucosal T cells. pp. 275-285. In: Handbook of Mucosal Immunology. Pearay LO, Jiri M, Michael EL, Warren S, Jerry RM, John B (eds). Academic Press, London, England (1994)
  17. Beutler B. Innate immunity: An overview. Mol. Immunol. 40: 845-859 (2004) https://doi.org/10.1016/j.molimm.2003.10.005
  18. Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat. Immunol. 5: 971-974 (2004) https://doi.org/10.1038/ni1004-971
  19. Tosi MF. Innate immune responses to infection. J. Allergy Clin. Immun. 116: 241-249 (2005) https://doi.org/10.1016/j.jaci.2005.05.036
  20. Finlay BB, Hancock REW. Can innate immunity be enhanced to treat microbial infections? Nat. Rev. Microbiol. 2: 497-504 (2004) https://doi.org/10.1038/nrmicro908
  21. Lis H, Sharon N. The biochemistry of plant lectins (phytohemagglutinins). Annu. Rev. Biochem. 42: 541-574 (1973) https://doi.org/10.1146/annurev.bi.42.070173.002545
  22. Saiki I, Murata J, Lida J, Sakurai T, Nishi N, Matsuno K, Azuma I. Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) sequences. Brit. J. Cancer 60: 722-728 (1989) https://doi.org/10.1038/bjc.1989.347
  23. Barlozzari T, Leonhardt J, Wiltrout RH, Herbeman RB, Reynolds CW. Direct evidence for the rule of LGL in the inhibition of experimental tumor metastasis. J. Immunol. 134: 2783-2789 (1985)
  24. Hanna N. The role of natural killer cells in the control of tumor growth and metastasis. Biochim. Biophys. Acta 780: 213-226 (1985)
  25. Schepetkin IA, Faulkner CL, Nelson-Overton LK, Wiley JA, Mark TQ. Macrophage immunomodulatory activity of polysaccharide isolated from Juniperus scopolorum. Int. Immunopharmacol. 5: 1783-1799 (2005) https://doi.org/10.1016/j.intimp.2005.05.009
  26. Villiniger F. Cytokines as clinical adjuvants: How far are we? Expert Rev. Vaccines 2: 317-326 (2003) https://doi.org/10.1586/14760584.2.2.317
  27. Chino A, Sakurai H, Choo MK, Koizumi K, Shimada Y, Terasawa K. Juzentaihoto, a kampo medicine, enhances IL-12 production by modulating Toll-like receptor 4 signaling pathways in murine peritoneal exudate macrophage. Int. Immunopharmacol. 5: 871-882 (2005) https://doi.org/10.1016/j.intimp.2005.01.004
  28. Yoon TJ, Lee SH, Hwang SH, Shin KS, Park WM, Hwang JH, Yu KW. Immunomodulating activity of pectic polysaccharides from Eleutherococcus senticosus. Food Sci. Biotechnol. 12: 533-539 (2003)
  29. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res. 64: 5850-5860 (2004) https://doi.org/10.1158/0008-5472.CAN-04-0063
  30. Schantz SP, Brown BW, Lira E, Taylor SL, Beddingfield N. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol. Immun. 25: 141-148 (1987)
  31. Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG. Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating monocytes: A new approach to cancer immunotherapy. Cancer Res. 50: 7450-7456 (1990)
  32. Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J. Immunol. 163: 1906-1913 (1999)
  33. Schepekin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333 (2006) https://doi.org/10.1016/j.intimp.2005.10.005