A Vinegar-processed Ginseng Radix (Ginsam) Ameliorates Hyperglycemia and Dyslipidemia in C57BL/KsJ db/db Mice

  • Han, Eun-Jung (Pharmacology and Clinical Pharmacy Lab, College of Pharmacy, Kyung Hee University) ;
  • Park, Keum-Ju (Pharmacology and Clinical Pharmacy Lab, College of Pharmacy, Kyung Hee University) ;
  • Ko, Sung-Kwon (Department of Oriental Medical Food and Nutrition, Semyung University) ;
  • Chung, Sung-Hyun (Pharmacology and Clinical Pharmacy Lab, College of Pharmacy, Kyung Hee University)
  • Published : 2008.12.31

Abstract

Having idea to develop more effective anti-diabetic agent from ginseng root, we comprehensively assessed the anti-diabetic activity and mechanisms of ginsam in C57BL/KsJ db/db mice. The db/db mice were divided into 4 groups; diabetic control (DC), ginsam at a dose of 300 or 500 mg/kg (GS300 or GS500) and metformin at a dose of 300 mg/kg (MT300). Ginsam was orally administered for 8 weeks. GS500 reduced the blood glucose concentration and significantly decreased an insulin resistance index. In addition, GS500 reduced the plasma non-esterified fatty acid, triglyceride, and increased high density lipoprotein-cholesterol as well as decreased the hepatic cholesterol and triglyceride. More interestingly, ginsam increased the plasma adiponectin level by 17% compared to diabetic control group. Microarray, quantitative-polymerase chain reaction and enzyme activity results showed that gene and protein expressions associated with glycolysis, gluconeogenesis, and fatty acid oxidation were changed to the way of reducing hepatic glucose production, insulin resistance and enhancing fatty acid $\beta$-oxidation. Ginsam also increased the phosphorylation of AMP-activated protein kinase and glucose transporter expressions in the liver and skeletal muscle, respectively. These changes in gene expression were considered to be the mechanism by which the ginsam exerted the anti-diabetic and anti-dyslipidemic activities in C57BL/KsJ db/db mice.

Keywords

References

  1. Zimmet P, Alberti KG, Shaw GJ. Global and societal implications of the diabetes epidemic. Nature 414: 782-787 (2001) https://doi.org/10.1038/414782a
  2. Friedman JM. A war on obesity, not the obese. Science 299: 856-858 (2003) https://doi.org/10.1126/science.1079856
  3. Cavaghan MK, Ehrmann DA, Polonsky KS. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Invest. 106: 329-333 (2000) https://doi.org/10.1172/JCI10761
  4. Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414: 821-827 (2001) https://doi.org/10.1038/414821a
  5. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: Scientific review. J. Am. Med. Assoc. 287: 360-372 (2002) https://doi.org/10.1001/jama.287.3.360
  6. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51: 1851-1858 (2002) https://doi.org/10.2337/diabetes.51.6.1851
  7. Nah SY, Park HJ, McCleskey EW. A trace component of ginseng that inhibits $Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. P. Natl. Acad. Sci. USA 92: 8739-8743 (1995)
  8. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  9. Yokozawa T, Kobayashi T, Oura H, Kawashima Y. Studies on the mechanism of the hypoglycemic activity of $ginsenoside-Rb_2$ in streptozotocin-diabetic rats. Chem. Pharm. Bull. 33: 869-872 (1985) https://doi.org/10.1248/cpb.33.869
  10. Chung SH, Choi CG, Park SH. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch. Pharm. Res. 24: 214-221 (2001) https://doi.org/10.1007/BF02978260
  11. Vuksan V, Sievenpiper JL. Herbal remedies in the management of diabetes: Lessons learned from the study of ginseng. Nutr. Metab. Cardiovas. 15: 149-160 (2005) https://doi.org/10.1016/j.numecd.2005.05.001
  12. Lai DM, Tu YK, Liu IM, Chen PF, Cheng JT. Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med. 72: 9-13 (2006) https://doi.org/10.1055/s-2005-916177
  13. Shang W, Yang Y, Jiang B, Zhou L, Liu S, Chen M. Ginsenoside $Rb_1$ promotes adipogenesis in 3T3-L1 cells by enhancing PPAR2 and C/EBP gene expression. Life Sci. 80: 618-625 (2007) https://doi.org/10.1016/j.lfs.2006.10.021
  14. Koide H, Oda T. Pathological occurrence of glucose 6-phosphatase in serum in liver diseases. Clin. Chim. Acta 4: 554-561 (1959) https://doi.org/10.1016/0009-8981(59)90165-2
  15. Hara H, Miwa I, Okuda J. Inhibition of rat glucokinase by alloxan and ninhydrin. Chem. Pharm. Bull. 34: 4731-4737 (1986) https://doi.org/10.1248/cpb.34.4731
  16. Gall JC, Brewer GJ, Dern RJ. Studies of glucose-6-phosphate dehydrogenase activity of individual erythrocytes: The methemoglobin-elution test for identification of females heterozygous for G6PD deficiency. Am. J. Hum. Genet. 17: 359-368 (1965)
  17. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159 (1987)
  18. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15-e25 (2002) https://doi.org/10.1093/nar/30.4.e15
  19. Winer J, Jung CK, Shackel I, Williams PM. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270: 41-49 (1999) https://doi.org/10.1006/abio.1999.4085
  20. Mitsumoto Y, Klip A. Development regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells. J. Biol. Chem. 267: 4957-4962 (1992)
  21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RL. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419 (1985) https://doi.org/10.1007/BF00280883
  22. Hu E, Liang P, Spieoelman BM. Adipo Q is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271: 10697-10703 (1996) https://doi.org/10.1074/jbc.271.18.10697
  23. Kappes A, Lottler G. Influences of ionomycin, dibutyryl-cyclo AMP and tuymour necrosis factor-alpha on imtracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm. Metab. Res. 32: 548-554 (2000) https://doi.org/10.1055/s-2007-978684
  24. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Bioph. Res. Co. 257: 79-83 (1999) https://doi.org/10.1006/bbrc.1999.0255
  25. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7: 941-953 (2001) https://doi.org/10.1038/90984
  26. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Uchida S, Yamashita S, Moda M, Kita S, Ueki K, Eto K, Akanuma Y, Froquel P, Foufelle F, Ferre P, Carling D, Kimura S, Naqai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8: 1288-1295 (2002) https://doi.org/10.1038/nm788
  27. Aguielera CM, Gil-Campos M, Canete R, Gil A. Alteration in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin. Sci. 114: 183-193 (2008) https://doi.org/10.1042/CS20070115
  28. Davies GF, Khandelwal RL, Wu L, Juurlink BH, Roesler WJ. Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: A peroxisome proliferator-activated receptor-gamma (PPARgamma)-independent, antioxidant-related mechanism. Biochem. Pharmacol. 62: 1071-1079 (2001) https://doi.org/10.1016/S0006-2952(01)00764-X
  29. Al-Hasani H, Tschop MH, Cushman SW. Two birds with one stone: Novel glucokinase activator stimulates glucose-induced pancreatic insulin secretion and augments hepatic glucose metabolism. Mol. Interv. 3: 367-370 (2000) https://doi.org/10.1124/mi.3.7.367
  30. Katsanos CS. Lipid-induced insulin resistance in the liver: Role of exercise. Sports Med. 34: 955-965 (2004) https://doi.org/10.2165/00007256-200434140-00002
  31. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F. Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders. J. Physiol. 574: 41-53 (2006) https://doi.org/10.1113/jphysiol.2006.108506
  32. Saha AK, Ruderman NB. Malonyl-CoA and AMP-activated protein kinase: An expanding partnership. Mol. Cell Biochem. 253: 65-70 (2003) https://doi.org/10.1023/A:1026053302036
  33. Winder WW, Holmes BF. Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. J. Appl. Physiol. 89: 2430-2437 (2000) https://doi.org/10.1152/jappl.2000.89.6.2430
  34. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais JF, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6: 924-928 (2000) https://doi.org/10.1038/78693
  35. Yun SN, Ko SK, Lee KH, Chung SH. Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch. Pharm. Res. 30: 587-595 (2007) https://doi.org/10.1007/BF02977653
  36. Park MW, Ha JH, Chung SH. 20(S)-Ginsenoside $Rg_3$ enhances glucose-stimulated insulin secretion and activates AMPK. Biol. Pharm. Bull. 31: 748-751 (2008) https://doi.org/10.1248/bpb.31.748