Simultaneous Detection of Food-borne Pathogenic Bacteria in Ready-to-eat Kimbab Using Multiplex PCR Method

  • Cho, Kye-Man (Research Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kambiranda, Devaiah M (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Seong-Weon (Department of Food Science, Jinju National University) ;
  • Math, Renukaradhya K (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Lim, Woo-Jin (Research Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Hong, Su-Young (Hazardous Substances Division, National Institute of Agricultural Science and Technology) ;
  • Yun, Han-Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
  • Published : 2008.12.31

Abstract

Kimbab is the most popular ready-to-eat (RTE) food in Korea. A rapid detection method based on multiplex PCR technique was developed for detection of major food-borne pathogens like Salmonella spp., Shigella spp., Bacillus cereus, Listeria monocytongenes, and Staphylococcus aureus. Specific bands were obtained as 108 bp (Sau, S. aureus), 284 bp (Sal, S. enterica, S. enteritids, and S. typhmurium), 404 bp (Lmo, L. monocytogenes), 475 bp (Bce, B. cereus), and 600 bp (Shi, S. flexineri and S. sonnei). Visible cell numbers varied from 4.14-5.03, 3.61-4.47, and 4.10-5.11 log CFU/g in randomly collected June, July, and August samples, respectively. Among the 30 kimbab samples obtained 83.3% samples were contaminated and 16.7% samples were free from contamination. The highest rate of contamination was with S. aureus (56.7%) followed by B. cereus (43.3%), Salmonella spp. (36.7%), Shigella spp. (13.3%), and L. monocytogenes (6.7%). The identification of the pathogenic species could be faster using one polymerase chain reaction (PCR) and the ability to test for food-borne pathogenic species in kimbab will save time and increase the ability to assure its quality.

Keywords

References

  1. Bhagwat AA. Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella strains by real-time PCR. Int. J. Food Microbiol. 84: 217-224 (2003) https://doi.org/10.1016/S0168-1605(02)00481-6
  2. Kim JS, Demeke T, Clear RM, Patrick SK. Simultaneous detection by PCR of Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium in artificially inoculated wheat grain. Int. J. Food Microbiol. 111: 21-25 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.04.032
  3. Park SY, Choi JW, Yeon JH, Lee MJ, Oh DH, Hong CH, Bahk GJ, Woo GJ, Park JS, Ha SD. Assessment of contamination level of food-borne pathogens in the main ingredients of kimbab during the preparing process. Korean J. Food Sci. Technol. 37: 122-128 (2005)
  4. Rho MJ, Schaffner DW. Microbial risk assessment of staphylococcal food poisoning in Korean kimbab. Int. J. Food Microbiol. 116: 332-338 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.02.006
  5. Korea Food & Drug Administration (KFDA). The report of food-borne illness in Korea. Available from Outbreak Food-borne Diseases Statistics System: http://fm.kfda.go.kr/stat/. Accessed Oct.15, 2006
  6. Bahk GJ, Hong CH, Oh DH, Ha SD, Park KH, Todd EC. Modeling the level of contamination of Staphylococcus aureus in ready-to-eat kimbab in Korea. J. Food Protect. 69: 1340-1346 (2006) https://doi.org/10.4315/0362-028X-69.6.1340
  7. Bahk GJ, Todd ECD, Hong CH, Oh DH, Ha SD. Exposure assessment for Bacillus cereus in ready-to-eat kimbab selling at stores. Food Control 18: 682-688 (2007) https://doi.org/10.1016/j.foodcont.2006.02.017
  8. Yoon SK, Kang YS, Sho MG, Kim CM, Park JY. Prevalence of enterotoxigenic Staphylococcus aureus in retail ready-to-eat Korean kimbab rolls. Food Sci. Biotechnol. 16: 621-625 (2007)
  9. Chamberlain JS, Gibbs RA, Ranier JE, Cskey CT. Multiplex PCR for the diagnosis of duchenne muscular dystrophy locus via multiplex DAN amplification. Nucleic Acids Res. 16: 1141-1156 (1988)
  10. Um SH, Shin WS, Lee JH. Real-time PCR monitoring of Lactobacillus sakei, Lactobaillus plantarum, and Lactobacillus paraplantarum during kimchi fermentation. Food Sci. Biotechnol. 15: 595-598 (2006)
  11. Kim JH, Song HS, Heo MS, Lee WY, Lee SH, Park SH, Park HK, Kim MC, Kim HY. Detection of eight different events of genetically modified maize by multiplex PCR method. Food Sci. Biotechnol. 15: 148-151 (2006)
  12. Yeon SS, Kim HJ, Kim TW, Kim HY. Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J. Microbiol. Biotechn. 17: 490-495 (2007)
  13. Li Y, Zhuang S, Mustapha A. Application of a multiplex PCR for the simultaneous detection of Escherichia coli O157:H7, Salmonella, and Shigella in raw and ready-to-eat meat products. Meat Sci. 71: 402-406 (2005) https://doi.org/10.1016/j.meatsci.2005.04.013
  14. Jofre A, Martin B, Garriga M, Hugas M, Pla M, Rodriguez-Lazaro D, Aymerich T. Simultaneous detection of Listeria monocytoenes and Salmonella by multiplex PCR in cooked ham. Food Microbiol. 22: 109-115 (2005) https://doi.org/10.1016/j.fm.2004.04.009
  15. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiple PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13: 559-570 (2000) https://doi.org/10.1128/CMR.13.4.559-570.2000
  16. Rossen L, Noskov P, Holmstrom K, Rasmussem OF. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solution. Int. J. Food Microbiol. 17: 37-45 (1992) https://doi.org/10.1016/0168-1605(92)90017-W
  17. Lantz PG, Al-Soud WA, Knutsson R, Hahn-Hagerdal B, Radstrom P. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples. Biotechnol. Annu. Rev. 5: 87-130 (2000) https://doi.org/10.1016/S1387-2656(00)05033-X
  18. Bailey JS, Cox NA. Universal preenrichment broth for the simultaneous detection of Salmonella and Listeria in foods. J. Food Protect. 55: 256-259 (1992) https://doi.org/10.4315/0362-028X-55.4.256
  19. Ballagi-Pordany A, Belak S. The use of mimics as internal standards to avoid false negatives in diagnostic PCR. Mol. Cell. Probe 10: 159-164 (1996) https://doi.org/10.1006/mcpr.1996.0022
  20. Abdulmawjood A, Roth S, Bülte M. Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Mol. Cell. Probe 16: 335-339 (2002) https://doi.org/10.1006/mcpr.2002.0431
  21. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, Curtiss III R, Gyles CL. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probe 6: 271-276 (1992) https://doi.org/10.1016/0890-8508(92)90002-F
  22. Lample KA, Orlandi PA, Kornegay L. Improved template preparation method for PCR-based assays for detection of food-borne bacterial pathogens. Appl. Enviorn. Microb. 66: 4539-4542 (2000) https://doi.org/10.1128/AEM.66.10.4539-4542.2000
  23. Yang IC, Shih DY, Huang TP, Huang YP, Wang JY, Pan TM. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J. Food Protect. 68: 2123-2130 (1992)
  24. Wu SJ, Chan A, Kado CI. Detection of PCR amplicons from bacterial pathogens using microsphere agglutination. J. Microbiol. Meth. 56: 395-400 (2004) https://doi.org/10.1016/j.mimet.2003.11.005
  25. Santos KRN, Teixeira LM, Leal GS, Fonseca LS, Gontijo-Filho PP. DNA typing of methicillin-resistant Staphylococcus aureus: Isolates and factor associated with nosocomial acquisition in two Brazilian university hospitals. J. Med. Microbiol. 48: 17-23 (1999) https://doi.org/10.1099/00222615-48-1-17
  26. Ramesh A, Padmapriya BP, Chandraashekar A, Varadaraj MC. Application of a convenient DNA extraction method and multiplex PCR for the direct detection of Staphylococcus aureus and Yersinia enterocolitica in milk samples. Mol. Cell. Probe 16: 307-314 (2002) https://doi.org/10.1006/mcpr.2002.0428
  27. Collins MD, Rodriguez U, Ash C, Aguirre M, Farrow JE, Martinezmurcia A, Phillips BA, Williams AM, Wallbanks S. Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse-transcriptase sequencing 16S ribosomal-RNA. FEMS Microbiol. Lett. 77: 5-12 (1991) https://doi.org/10.1111/j.1574-6968.1991.tb04313.x
  28. Grahn N, Olofsson M, Ellnebo-Svedlund K, Monstein HJ, Jonasson J. Identification of mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing of cloned amplicons. FEMS Microbiol. Lett. 219: 87-91 (2003) https://doi.org/10.1016/S0378-1097(02)01190-4
  29. Cho KM, Seo WT. Bacterial diversity in a Korean traditional soybean fermented foods (doenjang and ganjang) by 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 16: 320-324 (2007)
  30. Rossello-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39-65 (2001) https://doi.org/10.1111/j.1574-6976.2001.tb00571.x
  31. Settanni L, Corsetti A. The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms: A review. J. Microbiol. Meth 69: 1-22 (2007) https://doi.org/10.1016/j.mimet.2006.12.008
  32. Park SH, Kim HJ, Kim HY. Simultaneous detection of Yersinia enterocolitica, Staphylococcus aureus, and Shigella spp. in lettuce using multiplex PCR method. J. Microbiol. Biotechn. 16: 1301-1305 (2006)
  33. Rossen L, Noskov P, Holmstrom K, Rasmussen OF. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solution. Int. J. Food Microbiol. 17: 37-45 (1992) https://doi.org/10.1016/0168-1605(92)90017-W
  34. Al-Soud WA, Radstrom P. Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J. Clin. Microbiol. 38: 4463-4470 (2000)
  35. Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 39: 485-493 (2001) https://doi.org/10.1128/JCM.39.2.485-493.2001
  36. Lantz PG, Al-Soud WA, Knutsson R, Hahn-Hagerdal B, Radstrom P. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples. Biotechnol. Annu. Rev. 5: 87-130 (2000) https://doi.org/10.1016/S1387-2656(00)05033-X
  37. Kim MG, Oh MH, Lee GY, Hwang GI, Kwak HS, Kang YS, Koh YH, Jun HK, Kwon SK. Analysis of major food borne pathogens in various foods in Korea. Food Sci. Biotechnol. 17: 483-488 (2008)
  38. Korean Food & Drug Administration (KFDA). Food Code. Seoul, Korea. pp. 232-233 (2008)
  39. Hatakka M, Bjorkroth KJ, Asplund K, Maki-Petanys N, Korkeala HJ. Genotypes and enterotoxicity of Staphylococcus aureus isolated from the hands nasal cavities of flight catering employees. J. Food Protect. 63: 1487-1491 (2000) https://doi.org/10.4315/0362-028X-63.11.1487
  40. Gilbert RJ, McLauchlin J, Velani SK. The contamination of pate by Listeria monocytogenes in England and Wales in 1989 and 1990. Epidemiol. Infect. 110: 543-551 (1993) https://doi.org/10.1017/S0950268800050962
  41. Harvey J, Gilmour A. Occurrence and characteristics of Listeria in foods produced in northern Ireland. Int. J. Food Microbiol. 19: 193-205 (1993) https://doi.org/10.1016/0168-1605(93)90077-T
  42. Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487 (2004) https://doi.org/10.1002/mnfr.200400055
  43. Gouws PA, Visser M, Brözel VS. A polymerase chain reaction procedure for the detection of Salmonella sp. with 24 hours. J. Food Protect. 61: 1039-1042 (1998) https://doi.org/10.4315/0362-028X-61.8.1039
  44. Gast RK, Holt PS, Guraya R. Effect of refrigeration on in vitro penetration of Salmonella enteritidis through the egg yolk membrane. J. Food Protect. 69: 1426-1429 (2006) https://doi.org/10.4315/0362-028X-69.6.1426
  45. Holt JG, Kreig NR, Sneath HA, Staley JT, Williams ST. Bergey's Manual of Determinative Bacteriology. 9th ed. The Williams & Wilkins Co., Baltimore, MD, USA. pp. 187-188 (1994)
  46. Wachsmuth K, Morris GK. Food-borne bacterial pathogens. pp. 448-660. In: Shigella. Doyle MP (ed). Marcel Dekker Press, Inc., New York, NY, USA (1989)