In Vitro and Cellular Antioxidant Activity of a Water Extract of Saururus chinensis

  • Kim, Gyo-Nam (Department of Food and Nutrition, Hannam University) ;
  • Lee, Jung-Sook (Department of Food and Nutrition, Hannam University) ;
  • Jang, Hae-Dong (Department of Food and Nutrition, Hannam University)
  • Published : 2008.12.31

Abstract

The water extract of Saururus chinensis was investigated for oxygen radical absorbance capacity (ORAC), reducing capacity, metal chelating activity, and intracellular antioxidant activity using HepG2 cell. When 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) was used for the generation of peroxyl radicals in vitro, S. chinensis extract (SC-E) showed the strong and concentration-dependent scavenging activity through donating protons which could be explained by its reducing property. When hydroxyl radicals were generated in vitro through the addition of $Cu^{2+}$ and $H_2O_2$, SC-E demonstrated the antioxidant activity depending on its concentration. In HepG2 cell model, most of intracellular oxidative stress generated by AAPH was efficiently removed by SC-E. However, when $Cu^{2+}$ without $H_2O_2$ was used as an oxidant in the intracellular assay, SC-E partially reduced the oxidative stress caused by $Cu^{2+}$ in cellular antioxidant activity assay system. These results indicate that SC-E could be utilized for the development of functional foods as antioxidant resource in the near future.

Keywords

References

  1. Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95 (2001)
  2. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. The characterization of antioxidants. Food Chem. Toxicol. 33: 601-617 (1995) https://doi.org/10.1016/0278-6915(95)00024-V
  3. Pieta PG. Flavonoid as antioxidants. J. Nat. Prod. 63: 1035-1042 (2000) https://doi.org/10.1021/np9904509
  4. Moure A, Cruz JM, Franco D, Domingues JM, Sineiro J, Domíngues H, Nunez MJ, Parajo JC. Natural antioxidants from residual sources. Food Chem. 72: 145-171 (2001) https://doi.org/10.1016/S0308-8146(00)00223-5
  5. Hwang BY, Lee JH, Nam JB, Hong YS, Lee JJ. Lignans from Saururus chinensis inhibiting the transcription factor $NF-{\kappa}B$. Phytochemistry 64: 765-771 (2003) https://doi.org/10.1016/S0031-9422(03)00391-1
  6. Sung SH, Kim YC. Hepatoprotective diastereomeric lignans from Saururus chinensis herbs. J. Nat. Prod. 63: 1019-1021 (2000) https://doi.org/10.1021/np990499e
  7. Sung SH, Kwon SH, Cho NJ, Kim YC. Hepatoprotective flavonol glycosides of Saururus chinensis herbs. Phytother. Res. 11: 500-503 (1997) https://doi.org/10.1002/(SICI)1099-1573(199711)11:7<500::AID-PTR139>3.0.CO;2-P
  8. Rao KV, Puri VN, Diwan PK, Alvarez FM. Preliminary evaluation of manassantin A, a potential neuroleptic agent from Saururus chinensis. Pharmacol. Res. Commun. 19: 629-638 (1987) https://doi.org/10.1016/0031-6989(87)90117-2
  9. Lee EK, Ha KM, Yook JM, Jin MH, Seo CS, Son KH, Kim HP, Bae KH, Kang SS, Son JK, Chang HW. Anti-asthmatic activity of an ethanol extract from Saururus chinensis. Biol. Pharm. Bull. 29: 211-215 (2006) https://doi.org/10.1248/bpb.29.211
  10. Lee WS, Lee DW, Baek YI, An SJ, Cho KH, Choi YK, Kim HC, Park HY, Bae KW, Jeong TS. Human ACAT-1 and -2 inhibitory activities of saucerneol B, manssantin A and B isolated from Saururus chinensis. Bioorg. Med. Chem. Lett. 14: 3109-3112 (2004) https://doi.org/10.1016/j.bmcl.2004.04.023
  11. Joo HJ, Kang MJ, Seo TJ, Kim HA, Yoo SJ, Lee SK, Lim HJ, Byun BH, Kim JI. The hypoglycemic effect of Saururus chinensis Baill in animal models of diabetes mellitus. Food Sci. Biotechnol. 15: 413-417 (2006)
  12. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 163: 1161-1168 (2002) https://doi.org/10.1016/S0168-9452(02)00332-1
  13. Kang TH, Cho H, Oh H, Sohn DH, Kim TC. Flavonol glycosides with free radical scavenging activity of Saururus chinensis. Fitoterapia 76: 115-117 (2005) https://doi.org/10.1016/j.fitote.2004.10.011
  14. Lee WS, Baek YI, Kim JR, Cho KH, Sok DE, Jeong TS. Antioxidant activities of a new linan and a neolignan from Saururus chinensis. Bioorg. Med. Chem. Lett. 14: 5623-5628 (2004) https://doi.org/10.1016/j.bmcl.2004.08.054
  15. Ahn BT, Lee SK, Lee SB, Lee ES, Kim JG, Bok SH, Jeong TS. Low-density lipoprotein-antioxidant constituents of Saururus chinensis. J. Nat. Prod. 64: 1562-1564 (2001) https://doi.org/10.1021/np0006061
  16. Rajbhandari I, Takamatsu S, Nagle DG. A new dehydrogeranylgeraniol antioxidant from Saururus chinensis that inhibits intracellular reactive oxygen species (ROS)-catalyzed oxidation within HL-6-cells. J. Nat. Prod. 64: 693-695 (2001) https://doi.org/10.1021/np0101346
  17. Chandler SF, Dodds JH. The effect of phosphate, nitrogen, and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2: 105-108 (1983) https://doi.org/10.1007/BF00270178
  18. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid. Am. J. Enol. Vitricult. 149: 144-158 (1965)
  19. Moreno MIN, Isla MI, Sampietro AS, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  20. Kurihara H, Fukami H, Asami S, Totoda Y, Nakai M, Shibata H, Yao XS. Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol. Pharm. Bull. 27: 1093-1098 (2004) https://doi.org/10.1248/bpb.27.1093
  21. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Bio. Med. 22: 749-760 (1997) https://doi.org/10.1016/S0891-5849(96)00351-6
  22. Aruoma OI, Murcia A, Butler J, Halliwell B. Evaluation of the antioxidant and prooxidant action of gallic acid and its derivatives. J. Agr. Food Chem. 41: 1880-1885 (1993) https://doi.org/10.1021/jf00035a014
  23. Decker EA, Welch B. Role of ferritine as a lipid oxidation catalyst in muscle food. J. Agr. Food Chem. 38: 674-677 (1990) https://doi.org/10.1021/jf00093a019
  24. Lautraite S, Bigot-Lasserre D, Bars R, Carmichael N. Optimization of cell-based assays for medium through screening of oxidative stress. Toxicol. In Vitro 17: 207-220 (2003) https://doi.org/10.1016/S0887-2333(03)00005-5
  25. Cao G, Alessio HM, Cutler R. Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Bio. Med. 14: 303-311 (1993) https://doi.org/10.1016/0891-5849(93)90027-R
  26. Prior R, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsci-Woodill M, Huang D, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity, $ORAC_{FL}$) of plasma and other biological and food samples. J. Agr. Food Chem. 51: 3273-3279 (2003) https://doi.org/10.1021/jf0262256
  27. Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL. Lipophilic and hydrophilic capacities of common foods in the United States. J. Agr. Food Chem. 52: 4026-4037 (2004) https://doi.org/10.1021/jf049696w
  28. Shin JK, Kim GN, Jang HD. Antioxidant and pro-oxidant effects of green tea extracts in oxygen radical absorbance capacity assay. J. Med. Food 10: 32-40 (2007) https://doi.org/10.1089/jmf.2006.176