The Anti-Sticking Effect of Mixture of Trisodium Phosphate and Citric Acid on Oral Streptococcus species

구강 내 사슬알균 종들에 대한 제3인산나트륨과 구연산의 탈부착 효과

  • 정충현 (광주호산치과) ;
  • 조형훈 (조선대학교 의과대학 안과) ;
  • 최광주 (조선대학교 의과대학 안과) ;
  • 강승용 (조선대학교 의과대학 미생물학교실) ;
  • 양남웅 (조선대학교 의과대학 미생물학교실)
  • Published : 2008.12.31

Abstract

Trisodium phosphate 12 hydrate and citric acid monohydrate mixture showed the strong anti-sticking effect on Streptococcus mutans, Streptococcus mitis, and Streptococcus salivarius, which are adhered to glass beads. Each Streptococcus species was shaking-cultured in brain heart infusion broth containing three glass beads. After 18 hr, glass beads were slightly washed into normal saline by three-pin-pointed pincette. Each three glass-beads set was put into reagent -containing tubes, which have 40 mg of bits of weighing paper for gaining brushing effect as similar as brushing one's teeth. The tubes were shaken by vortex mixer for 10 min except non-oral microbe, Streptococcus agalactiae (5 min). The samples were colony-counted by serial agar dilution method. Experiment was repeated three times for each Streptococcus species. The relative ratios of bacterial de-adherence by reagents were calculated in comparison with normal saline control. The de-adherence degree of citric acid-trisodium phosphate-saline mixture (CTS, pH 6.0) against Streptococcus mutans came to an average of 12.5 times compared with normal saline control. Trisodium-saline (TS, pH 8.4) showed the average of 7.5 times, and citric acid-saline (CS, pH 4.6) showed 6.0 times compared to the control group. The bacterial de-adherence degree against Streptococcus salivarius was each 7.2,2.6 and 2.8 times in above reagent sequence in comparison with saline control. CTS and TS showed 2.4 and 3.4 times of anti-sticking effect on Streptococcus mitis respectively, but CS had no anti-sticking effect on this bacterium. CTS, TS and CS showed 0.7, 0.6, and 0.6 times on non-oral microbe, Streptococcus agalactiae, separately compared with saline control. These results show that oral Streptococcus mutans, Streptococcus salivarius, and Streptococcus mitis, which are causative of dental caries or subacute endocarditis, may be easily removed from oral cavity by CTS mixture. It is conceivable that our experimental results will enable the development of a new conceptive toothpaste to prevent dental caries or subacute endocarditis after drawing teeth.

Irisodium phosphate 12 hydrate와 citric acid monohydrate의 혼합액은 유리구슬(${\phi}7mm$)에 부착된 Streptococcus mutans (KCTC 3065)와 Streptococcus mitis (KCTC 3556) 및 Streptococcus salivarius (KCTC 3960)에 대하여 강한 항 부각효과를 보였다. 각 사슬알균 종들은 각각 3개의 유리구슬들이 들어있는 BHI 액체배지에서 18시간 흔들 배양되었다. 배양 후, 3개의 짧은 핀들이 부착된 핀셋을 사용하여 유리구슬들을 꺼낸 다음, 유리구슬에 맺힌 균액을 제거하기 위하여 생리식염수로 가볍게 세척하였다. 각 균주당 3개의 유리구슬들을 시약들이 들어있는 시험관에 넣고 vortex mixer로 10분씩 와동(渦動)하였다. 칫솔질과 유사한 효과를 얻기 위해 각 시험관들에 물에 젖지 않는 기름종이 조각들을 40 mg씩 넣었다. 구강 내 사슬알균 종이 아닌 Streptococcus agalactiae는 5분간 와동(渦動)하였다. 각 시험관에서 취한 샘플들을 10배 계단 희석하여 BBH 한천 배지와 혼합하고 배양한 다음, 집락수를 계수하였다. 사슬알균 종 당실험을 3번 반복하였고, 시약에 의해 탈부착된 균수를 평균하여 생리식염수대조군의 평균으로 나누어 그 배수를 탈부착 효과로 계산하였다. treptococcus mutans에 대하여 구연산-제3인산나트륨-식염수혼합액(이하 CTS, pH 6.0)의 탈부착 효과는 생리식염수 대조군에 비해서 평균 12.5배였으며, 제3인산나트륨-식염수 혼합액(이하 TS, pH 8.4)은 평균 7.5배였고, 구연산-식염수 혼합액(이하 CS, pH 4.6)은 6.0배였다. Streptococcus salivarius에 대해서 CTS는 7.2배, TS는 2.6배, CS는 2.8배였다. Streptococcus mitis에 대해서 CTS는 2.4배였고, TS는 3.4배였으나 CS는 0.3배로 탈부착 효과가 없었다. 구강 내 사슬알균 종이 아닌 Streptococcus agalactiae에 대해서 CTS는 0.7배, TS는 0.6배, CS는 0.6배로 3가지 시약에 대하여 탈부착 효과가 전혀 없었다. 이러한 결과들은 충치와 아급성 심내막염의 원인균인 구강 내 Streptococcus mutans, Streptococcus salivarius 및 Streptococcus mitis가 CTS 혼합물에 의해서 구강으로부터 쉽게 제거될 수 있음을 의미한다. 따라서 이러한 결과를 응용하면 새로운 개념의 치약을 개발할 수 있을 것으로 생각되며, 충치의 예방 및 발치 후 아급성 심내막염의 예방에 도움이 될 것으로 사료된다.

Keywords

References

  1. Article, 1994. Rhone-Poulenc advances TSP poultry rinse uses. Chemical Marketing Reporter Vol. 245 Issue 10, p18, 1/8p
  2. Burros, M. 1992. U.S. approves chicken treatment to cut salmonella. New York Times Vol. 142 Issue 49119, pC1
  3. Capita, R., C. Alonso-Calleja, M.C. Garcia-Fernandez, and B. Moreno. 2001. Influence of strain and trisodium phosphate concentration on growth parameters of Listeria monocytogenes in vitro. Lett. Appl. Microbiol. 32, 428-432 https://doi.org/10.1046/j.1472-765X.2001.00936.x
  4. Capita, R., C. Alonso-Calleja, R. Rodriguez-Perez, B. Moreno, and M.C. Garcia-Fernandez. 2002. Influence of poultry carcass skin sample site on the effectiveness of trisodium phosphate against Listeria monocytogenes. J. Food Prot. 65, 853-856 https://doi.org/10.4315/0362-028X-65.5.853
  5. Capita, R., C. Alonso-Calleja, M. Prieto, M.C. Garcia-Fernandez, and B. Moreno. 2003. Effectiveness of trisodium phosphate against Listeria monocytogenes on excised and non-excised chicken skin. J. Food Prot. 66, 61-64 https://doi.org/10.4315/0362-028X-66.1.61
  6. Cutter, C.N. and M. Rivera-Betancourt. 2000. Interventions for the reduction of Salmonella typhimurium DT 104 and non-O157:H7 enterohemorrhagic Escherichia coli on beef surfaces. J. Food Prot. 63, 1326-1332 https://doi.org/10.4315/0362-028X-63.10.1326
  7. Ellerbroek, L., E.M. Okolocha, and E. Weise. 1997. Decontamination of poultry meat trisodium phosphate and lactic acid. Rleischwirtschaft 77, 1092-1094
  8. Favier, G.L., M.E. Escudero, and A.M. de Guzman. 2001. Effect of chlorine, sodium chloride, trisodium phophate, and ultraviolet radiation on the reduction of Yersinia enterocolitica and mesophilic aerobic bacteria from eggshell surface. J. Food Prot. 64, 1621-1623 https://doi.org/10.4315/0362-028X-64.10.1621
  9. Giese, J. 1992. Salmonella reduction process receives approval. Food Technol. 46, 110
  10. Giese, J. 1992. Experimental process reduces Salmonella on poultry. Food Technol. 46, 112
  11. Goncalves, A.C., R.C.C. Almeida, M.A.O. Alves, and P.F. Almeida. 2005. Quantitative investigation on the effects of chemical treatments in reducing Listeria monocytogenes populations on chicken breast meat. Food Control 16, 617-622 https://doi.org/10.1016/j.foodcont.2004.06.026
  12. Kim, C.R., K.H. Kim, and S.B. Suh. 2000. Microbiological and sensory evaluations of chicken wings treated with acetic acid and trisodium phosphate during retail and refrigerated storage. Korean J. Poult. Sci. 27, 189-195
  13. Kim, J. and D.L. Marshall. 2002. Influence of catfish skin mucus on trisodium phosphate inactivation of attached Salmonella typh-imurium, Edwardsiella tarda, Listeria monocytogenes. J. Food Prot. 65, 1146-1151 https://doi.org/10.4315/0362-028X-65.7.1146
  14. Liao, C.H. and P.H. Cooke. 2001. Response to trisodium phosphate treatment of Salmonella chester attached to fresh-cut green pepper slices. Can. J. Microbiol. 47, 25-32 https://doi.org/10.1139/cjm-47-1-25
  15. Okolocha, E.C. and L. Ellerbroek. 2005. The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control 16, 217-225 https://doi.org/10.1016/j.foodcont.2004.01.015
  16. Perrin, D.D. and B. Dempsey. 1974. Buffers for pH and metal ion control, 1st ed., p. 156. Halsted Press, a Division of John wiley & Sons, Inc, New York, USA
  17. Ramirez, A.J., G.R. Acuff, L.M. Lucia, and J.W. Savell. 2001. Lactic acid and trisodium phosphate treatment of lamb breast to reduce bacterial contamination. J. Food Prot. 64, 1439-1441 https://doi.org/10.4315/0362-028X-64.9.1439
  18. Ray, B. and W.E. Sandine. 1991. Acetic, propionic, and lactic acids of starter culture bacteria as biopreservatives. In B. Ray and M. Baeschel (eds.), CRC Press, Boca Raton, FL, USA