Pseudomonas putida BJ10의 Tetrachloroethylene (PCE) 분해 특성

The Characteristics of Tetrachloroethylene (PCE) Degradation by Pseudomonas putida BJ10

  • 발행 : 2008.12.31

초록

BTEX 분해능을 가진 BJ10세균을 이용하여 호기조건에서 toluene 첨가 시 tetrachloroethylene (PCE) 분해에 관한 연구를 수행하였다. BJ10은 형태학적 특징, 생리 생화학적 특징, 16S rRNA 염기서열 분석 및 지방산 분석 결과에 따라 Pseudomonas putida로 동정되었다. BJ10의 PCE 저농도 5 mg/L에서 PCE 분해 실험 결과(toluene 첨가 기질 농도 50mg/L, 균초기 접종농도 1.0g/L, 온도 $30^{\circ}C$, pH7 그리고 DO $3.0{\sim}4.2\;mg/L$), 10일간 52.8%의 분해 효율을 보였으며, PCE 분해 속도는 5.9 nmol/hr로 나타났다. 또한 BJ10의 PCE 고농도 100 mg/L에서 PCE 분해 실험 결과 (toluene 첨가 기질 농도 50 mg/L, 균 초기 접종 농도 1.0 g/L, 온도 $30^{\circ}C$, pH 7 그리고 DO $3.0{\sim}4.2\;mg/L$), 10일간 20.3%의 분해 효율을 보였으며, PCE 분해 속도는 46.0 nmol/hr로 나타났다. Toluene 첨가 농도에 따른 PCE 분해 효율 증감 효과를 알아보기 위하여, 동일한 배양 조건하에 10 mg/L의 PCE에 toluene ($5{\sim}200\;mg/L$)을 첨가하여 분해 실험을 실시한 결과, toluene 200 mg/L 첨가시 10일간 57.0%의 PCE가 분해되어 가장 높은 제거 효율을 보였다. 또한 PCE 5.5 mg/L(총 7.6 mg/L)를 추가적으로 주입하여 동일조건하에서 PCE 분해를 확인하였으며 결과적으로 8일 동안 63.0%의 PCE가 분해되었다. 이 때의 PCE 분해 속도는 13.5 nmol/hr로 초기의 분해속도(8.1 nmol/hr)보다 증가되었다.

In this study, biological PCE degradation by using a BTEX degrading bacterium, named BJ10, under aerobic conditions in the presence of toluene was examined. According to morphological, physiological characteristics, 16S rDNA sequencing and fatty acid analysis, BJ10 was classified as Pseudomonas putida. As a result of biological PCE degradation at low PCE concentrations (5 mg/L), PCE removal efficiency by P. putida BJ10 was 52.8% for 10 days, and PCE removal rate was 5.9 nmol/hr (toluene concentration 50 mg/L, initial cell density 1.0 g (wet weight)/L, temperature 30, pH 7 and DO $3.0{\sim}4.2\;mg/L$. At high PCE concentration (100 mg/L), PCE removal efficiency by P. putida BJ10 was 20.3% for 10 days, and PCE removal rate was 46.0 nmol/hr under the same conditions. The effects of various toluene concentration (5, 25, 50, 100, 200 mg/L) on PCE degradation were examined under the same incubation conditions. The highest PCE removal efficiency of PCE was 57.0% in the initial PCE concentration of 10 mg/L in the presence of 200 mg/L toluene for 10 days. Furthermore, the additional injection of 5.5 mg/L PCE (total 7.6 mg/L) made 63.0% degradation for 8 days in the presence of 50 mg/L toluene under the same conditions. Its removal rate was 13.5 nmol/hr, which was better than the initial removal rate (8.1 nmol/hr).

키워드

참고문헌

  1. 환경부, 2007. 지하수 수질측정망 운영 결과
  2. 환경부, 토양 오염 우려 기준, 대책 기준
  3. Amon, J.P., A. Agrawal, M.L. Shelley, B.C. Opperman, M.P. Enright, N.D. Clemmer, T. Slusser, J. Lach, T. Sobolewski, W. Gruner, and A.C. Entingh. 2007. Development of a wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecol. Eng. 30, 51-66 https://doi.org/10.1016/j.ecoleng.2007.01.008
  4. Anke, N., S.M. Heidrun, and G. Diekert. 1994. Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch. Microbiol. 162, 295-301 https://doi.org/10.1007/BF00301854
  5. Barrio-Lage, G., F.Z. Parson, R.S. Nassar, and P.A. Lorenzo. 1986. Sequential dehalogenation of chlorinated ethenes. Environ. Sci. Technol. 20, 96-99 https://doi.org/10.1021/es00143a013
  6. Blankenship, A., D. Chang, A. Jones, P. Kelly, I. Kennedy, F. Matsumura, R. Pasek, and G. Yang. 1994. Toxic combustion by-products from the incineration of chlorinated hydrocarbons and plastics. Chemosphere 29, 183-196
  7. Brenner, D.J., N.R. Krieg, and J.T. Staley. 2005. Bergey's manual of systematic bacteriology, 2nd ed., p. 354-372. The Williams & Wilkins Co., Baltimore, Maryland, USA
  8. Cabirol, N., F. Jacob, J. Perrier, B. Fouillet, and P. Chambon. 1998. Complete degradation of high concentration of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. J. Biotechnol. 62, 133-141 https://doi.org/10.1016/S0168-1656(98)00053-4
  9. Chang, Y.C., M. Hatsu, and K. Jung. 2000. Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89, 5, 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  10. Dawson, H.E. and P.V. Roberts. 1997. Influence of biscous gravitational and capillary forces on DNAPL saturation. Ground Water 35, 261-269 https://doi.org/10.1111/j.1745-6584.1997.tb00083.x
  11. Distefano, T.D., J.M. Gossett, and S.H. Zinder. 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57, 2287-2292
  12. Freedman, D.L. and J.M. Gossett. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55, 2144-2151
  13. Heidrun, R., A. Lorenz, and S. Martin. 2004. Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55, 661-669 https://doi.org/10.1016/j.chemosphere.2003.11.053
  14. Holliger, C., G. Schraa, A.J.M. Stams, and A.J.B. Zehnder. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59, 2991-2997
  15. Lawrence, P.W. and T.G. David. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54, 1703-1708
  16. McCarty, P.L. 1997. Breathing with chlorinated solvents. Science 276, 1521-1522 https://doi.org/10.1126/science.276.5318.1521
  17. Phelps, T.J., J.J. Niedzielski, R.M. Schram, S.E. Herbes, and D.C. White. 1990. Biodegradation of trichloroethylene in continuousrecycle expanded-bed bioreactors. Appl. Environ. Microbiol. 56, 1702-1709
  18. Ryoo, D., H. Shim, K. Canada, P. Barbieri, and T.K. Wood. 2000. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat. Biotechnol. 18, 775-778 https://doi.org/10.1038/77344
  19. Ryoo, D., H. Shim, P. Barbieri, and T.K. Wood. 2001. Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene- o-xylene monooxygenase activity in Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56, 545-549 https://doi.org/10.1007/s002530100675
  20. Sasser, M. 1990. Identification of bacteria through fatty acid analysis. 199-204. In Z. Klement, K. Rudolph, and D.C. Sands (eds.), Methods in phytobacteriology. Akademiai Kiado, Budapest
  21. Shim, H., D. Ryoo, P. Barbieri, and T.K. Wood. 2001. Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56, 265-269 https://doi.org/10.1007/s002530100650
  22. U. S. EPA. 1998. National primary drinking water regulations, technical factsheet on: Tetrachloroethylene, Environmental Protection Agency
  23. Wang, L., N. Qiao, F. Sun, and Z. Shao. 2008. Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12, 335-342 https://doi.org/10.1007/s00792-007-0136-4
  24. World Health Organization. 2006. Concise international chemical assessment document 68.c
  25. Xavier, M., T.A. Gatell, and H.Z. Stephen. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by 'Dehalococcoides ethenogenes' 195. Appl. Environ. Microbiol. 65, 3108-3113
  26. Yuki, M., U. Hajime, T. Yasunori, and H. Katsutoshi. 2002. Characterization of the adaptive response to trichloroethylene-mediated stresses in Ralstonia picketti PKO1. Appl. Environ. Microbiol. 68, 5231-5240 https://doi.org/10.1128/AEM.68.11.5231-5240.2002